
JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological

University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(NBA Accredited)

COURSE MATERIAL

CST 309 MANAGEMENT OF SOFTWARE SYSTEMS

VISION OF THE INSTITUTION

Emerge as a centre of excellence for professional education to produce high quality engineers

and entrepreneurs for the development of the region and the Nation.

MISSION OF THE INSTITUTION

 To become an ultimate destination for acquiring latest and advanced knowledge in the

multidisciplinary domains.

 To provide high quality education in engineering and technology through innovative
teaching-learning practices, research and consultancy, embedded with professional

ethics.

 To promote intellectual curiosity and thirst for acquiring knowledge through outcome

based education.

 To have partnership with industry and reputed institutions to enhance the

employability skills of the students and pedagogical pursuits.

 To leverage technologies to solve the real life societal problems through community
services.

ABOUT THE DEPARTMENT

 Established in: 2008

 Courses offered: B.Tech in Computer Science and Engineering

 Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

To produce competent professionals with research and innovative skills, by providing them

with the most conducive environment for quality academic and research oriented

undergraduate education along with moral values committed to build a vibrant nation.

DEPARTMENT MISSION

 Provide a learning environment to develop creativity and problem solving skills in a

professional manner.

 Expose to latest technologies and tools used in the field of computer science.

 Provide a platform to explore the industries to understand the work culture and

expectation of an organization.

 Enhance Industry Institute Interaction program to develop the entrepreneurship skills.

 Develop research interest among students which will impart a better life for the
society and the nation.

PROGRAMME EDUCATIONAL OBJECTIVES

Graduates will be able to

 Provide high-quality knowledge in computer science and engineering required for a

computer professional to identify and solve problems in various application domains.

 Persist with the ability in innovative ideas in computer support systems and transmit

the knowledge and skills for research and advanced learning.

 Manifest the motivational capabilities, and turn on a social and economic commitment
to community services.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the
professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

COURSE OUTCOMES

SUBJECT CODE: C210

COURSE OUTCOMES

C305.1 To identify the basic structure and functional units of a digital computer. And
analyze the effect of addressing modes on the execution time of a program

C305.2 To design processing unit using the concepts of ALU and control logic design.

C305.3 To select appropriate interfacing standards for I/O devices.

C305.4 To identify the pros and cons of different types of Memory systems and
understand mapping functions.

C305.5 To select appropriate interfacing standards for I/O devices.

C305.6 To identify the roles of various functional units of a computer in instruction
execution. And analyze the types of control logic design in processors.

PROGRAM SPECIFIC OUTCOMES (PSO)

The students will be able to

 Use fundamental knowledge of mathematics to solve problems using suitable analysis
methods, data structure and algorithms.

 Interpret the basic concepts and methods of computer systems and technical
specifications to provide accurate solutions.

 Apply theoretical and practical proficiency with a wide area of programming

knowledge, design new ideas and innovations towards research.

CO PO MAPPING

Note: H-Highly correlated=3, M-Medium correlated=2,L-Less correlated=1

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

C305.1 3 2 2 - - - - - - - 2

C305.2 3 3 - - 2 - - - - - - 2

C305.3 3 2 - - 2 - - - - - - 2

C305.4 3 2 2 - - - - - - - 2

C305.5 3 3 3 - - - - - - - - -

C305.6 3 2 - - 2 - - - - - - 2

C305 3 2.3 2.3 2 2

CO PSO MAPPING

CO’S PSO1 PSO2 PSO3

C305.1 3 2 2

C305.2 3 2 2

C305.3 3 2 2

C305.4 2 2 2

C305.5 2 3 2

C305.6 2 3 2

C305 2.5 2.3 2

MODULE 1 : Introduction to Software

Engineering (7 hours)

▶ 1. Introduction to Software Engineering - Professional software development,

Software engineering ethics

▶ Software process models - The waterfall model, Incremental development.
Process activities - Software specification, Software design and implementation,
Software validation, Software evolution. Coping with change - Prototyping,
Incremental delivery, Boehm's Spiral Model.

▶ Agile software development - Agile methods, agile manifesto - values and
principles. Agile development techniques, Agile Project Management.

▶ Case studies : An insulin pump control system. Mentcare - a patient information
system for mental health care.

1.1 Professional software development

▶ Software is not just a program themselves but also all associated documentation and
configuration data .

▶ What is a software Engineering?

Frequently asked questions about software engineering

Question Answer

What is software? Computer programs and associated documentation. Software

products may be developed for a particular customer or may be

developed for a general market.

What are the attributes of good software? Good software should deliver the required functionality and

performance to the user and should be maintainable,

dependable and usable.

What is software engineering? Software engineering is an engineering discipline that is

concerned with all aspects of software production.

What are the fundamental software engineering

activities?

Software specification, software development, software

validation and software evolution.

What is the difference between software

engineering and computer science?

Computer science focuses on theory and fundamentals;

software engineering is concerned with the practicalities of

developing and delivering useful software.

What is the difference between software

engineering and system engineering?

System engineering is concerned with all aspects of computer-

based systems development including hardware, software and

process engineering. Software engineering is part of this more

general process.

Frequently asked questions about software engineering

Question Answer

What are the key challenges facing software

engineering?

Coping with increasing diversity, demands for reduced delivery times

and developing trustworthy software.

What are the costs of software engineering? Roughly 60% of software costs are development costs, 40% are testing

costs. For custom software, evolution costs often exceed development

costs.

What are the best software engineering techniques

and methods?

While all software projects have to be professionally managed and

developed, different techniques are appropriate for different types of

system. For example, games should always be developed using a

series of prototypes whereas safety critical control systems require a

complete and analyzable specification to be developed. You can’t,

therefore, say that one method is better than another.

What differences has the web made to software

engineering?

The web has led to the availability of software services and the

possibility of developing highly distributed service-based systems.

Web-based systems development has led to important advances in

programming languages and software reuse.

Software products

▶ Generic products

▶ Stand-alone systems that are marketed and sold to any customer who wishes to buy
them.

▶ Examples – PC software such as graphics programs, project management tools; CAD
software; software for specific markets such as appointments systems for dentists.

▶ Organization that develops the software controls the software specification.

▶ Customized products(bespoke)

▶ Software that is commissioned by a specific customer to meet their own needs.

▶ Examples – embedded control systems, air traffic control software, traffic monitoring
systems.

▶ Specification is developed and controlled by the organization ie buying the software.

Essential attributes of good software

Product characteristic Description

Maintainability Software should be written in such a way so that it can evolve to meet the

changing needs of customers. This is a critical attribute because software

change is an inevitable requirement of a changing business environment.

Dependability and security Software dependability includes a range of characteristics including reliability,

security and safety. Dependable software should not cause physical or economic

damage in the event of system failure. Malicious users should not be able to

access or damage the system.

Efficiency Software should not make wasteful use of system resources such as memory

and processor cycles. Efficiency therefore includes responsiveness, processing

time, memory utilisation, etc.

Acceptability Software must be acceptable to the type of users for which it is designed. This

means that it must be understandable, usable and compatible with other systems

that they use.

1.1.1 Software Engineering

▶ Software engineering is an engineering discipline that is concerned with all aspects of

software production from the early stages of system specification through to
maintaining the system after it has gone into use.

▶ Engineering discipline

▶ Using appropriate theories and methods to solve problems within the organizational and
financial constraints.

▶ All aspects of software production

▶ Not just technical process of development. Also project management and the development
of tools, methods etc. to support software production.

Importance of software engineering

▶ More and more, individuals and society rely on advanced software systems.
We need to be able to produce reliable and trustworthy systems economically
and quickly.

▶ It is usually cheaper, in the long run, to use software engineering methods and
techniques for software systems rather than just write the programs as if it
was a personal programming project. For most types of system, the majority
of costs are the costs of changing the software after it has gone into use.

Software process activities

▶ Software specification, where customers and engineers define the software
that is to be produced and the constraints on its operation.

▶ Software development, where the software is designed and programmed.

▶ Software validation, where the software is checked to ensure that it is what
the customer requires.

▶ Software evolution, where the software is modified to reflect changing
customer and market requirements.

General issues that affect most software

▶ Heterogeneity

▶ Increasingly, systems are required to operate as distributed systems across
networks that include different types of computer and mobile devices.

▶ Business and social change

▶ Business and society are changing incredibly quickly as emerging economies
develop and new technologies become available. They need to be able to change
their existing software and to rapidly develop new software.

▶ Security and trust

▶ As software is intertwined with all aspects of our lives, it is essential that we can
trust that software

1.1.2 Software Engineering diversity
▶ There are many different types of software system and there is no universal

set of software techniques that is applicable to all of these.

▶ The software engineering methods and tools used depend on the type of
application being developed, the requirements of the customer and the
background of the development team.

Software Engineering fundamentals

▶ Some fundamental principles apply to all types of software system,
irrespective of the development techniques used:

▶ Systems should be developed using a managed and understood development
process. Of course, different processes are used for different types of software.

▶ Dependability and performance are important for all types of system.

▶ Understanding and managing the software specification and requirements (what
the software should do) are important.

▶ Where appropriate, you should reuse software that has already been developed
rather than write new software.

Application types

▶ Stand-alone applications

▶ These are application systems that run on a local computer, such as a PC. They
include all necessary functionality and do not need to be connected to a network.

▶ Interactive transaction-based applications

▶ Applications that execute on a remote computer and are accessed by users from
their own PCs or terminals. These include web applications such as e-commerce
applications.

▶ Embedded control systems

▶ These are software control systems that control and manage hardware devices.
Numerically, there are probably more embedded systems than any other type of
system.

▶ Batch processing systems

▶ These are business systems that are designed to process data in large batches. They process
large numbers of individual inputs to create corresponding outputs.

▶ Entertainment systems

▶ These are systems that are primarily for personal use and which are intended to entertain the
user.

▶ Systems for modeling and simulation

▶ These are systems that are developed by scientists and engineers to model physical processes
or situations, which include many, separate, interacting objects.

▶ Data collection systems

▶ These are systems that collect data from their environment using a set of sensors and send that
data to other systems for processing.

▶ Systems of systems

▶ These are systems that are composed of a number of other software systems

1.1.3 Software Engineering and the Web

▶ The Web is now a platform for running application and organizations are
increasingly developing web-based systems rather than local systems.

▶ Web services allow application functionality to be accessed over the web.

▶ Cloud computing is an approach to the provision of computer services where
applications run remotely on the ‘cloud’.

▶ Users do not buy software buy pay according to use

Web software Engineering

▶ Software reuse is the dominant approach for constructing web-based systems.

▶ When building these systems, you think about how you can assemble them from

pre-existing software components and systems.

▶ Web-based systems should be developed and delivered incrementally.

▶ It is now generally recognized that it is impractical to specify all the requirements
for such systems in advance.

▶ User interfaces are constrained by the capabilities of web browsers.

▶ Technologies such as AJAX allow rich interfaces to be created within a web browser
but are still difficult to use. Web forms with local scripting are more commonly
used.

1.2 Software engineering ethics

▶ Software engineering involves wider responsibilities than simply the
application of technical skills.

▶ Software engineers must behave in an honest and ethically responsible way if
they are to be respected as professionals.

▶ Ethical behaviour is more than simply upholding the law but involves following
a set of principles that are morally correct.

Issues of professional responsibility

▶ Confidentiality

▶ Engineers should normally respect the confidentiality of their employers or clients irrespective of
whether or not a formal confidentiality agreement has been signed.

▶ Competence

▶ Engineers should not misrepresent their level of competence. They should not knowingly accept
work which is outwith their competence.

▶ Intellectual property rights

▶ Engineers should be aware of local laws governing the use of intellectual property such as patents,
copyright, etc. They should be careful to ensure that the intellectual property of employers and
clients is protected.

▶ Computer misuse

▶ Software engineers should not use their technical skills to misuse other people’s computers.
Computer misuse ranges from relatively trivial (game playing on an employer’s machine, say) to
extremely serious (dissemination of viruses).

ACM/IEEE Code of Ethics

▶ The professional societies in the US have cooperated to produce a code of
ethical practice.

▶ Members of these organisations sign up to the code of practice when they
join.

▶ The Code contains eight Principles related to the behaviour of and decisions
made by professional software engineers, including practitioners, educators,
managers, supervisors and policy makers, as well as trainees and students of
the profession.

Rationale for the code of ethics

▶ Computers have a central and growing role in commerce, industry, government,
medicine, education, entertainment and society at large. Software engineers are
those who contribute by direct participation or by teaching, to the analysis,
specification, design, development, certification, maintenance and testing of

software systems.

▶ Because of their roles in developing software systems, software engineers have
significant opportunities to do good or cause harm, to enable others to do good or
cause harm, or to influence others to do good or cause harm. To ensure, as much
as possible, that their efforts will be used for good, software engineers must

commit themselves to making software engineering a beneficial and respected
profession.

The ACM/IEEE Code of Ethics

Software Engineering Code of Ethics and Professional Practice

▶ ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE

▶ The short version of the code summarizes aspirations at a high level of the abstraction; the clauses
that are included in the full version give examples and details of how these aspirations change the way
we act as software engineering professionals. Without the aspirations, the details can become
legalistic and tedious; without the details, the aspirations can become high sounding but empty;
together, the aspirations and the details form a cohesive code.

▶ Software engineers shall commit themselves to making the analysis, specification, design,
development, testing and maintenance of software a beneficial and respected profession. In
accordance with their commitment to the health, safety and welfare of the public, software engineers
shall adhere to the following Eight Principles:

▶

Ethical principles

CASE STUDIES

1.3 CASE STUDIES

▶ A personal insulin pump

▶ An embedded system in an insulin pump used by diabetics to maintain blood
glucose control.

▶ A mental health case patient management system

▶ A system used to maintain records of people receiving care for mental health
problems.

▶ A wilderness weather station

▶ A data collection system that collects data about weather conditions in remote
areas.

1.3.1 Insulin pump control system

▶ Collects data from a blood sugar sensor and calculates the amount of insulin
required to be injected.

▶ Calculation based on the rate of change of blood sugar levels.

▶ Sends signals to a micro-pump to deliver the correct dose of insulin.

▶ Safety-critical system as low blood sugars can lead to brain malfunctioning,
coma and death; high-blood sugar levels have long-term consequences such as
eye and kidney damage.

Insulin pump hardware architecture
Activity model of the insulin pump

Essential high-level requirements

▶ The system shall be available to deliver insulin when required.

▶ The system shall perform reliably and deliver the correct amount of insulin to
counteract the current level of blood sugar.

▶ The system must therefore be designed and implemented to ensure that the
system always meets these requirements.

1.3.2 A patient information system for

mental health care

▶ A patient information system to support mental health care is a medical
information system that maintains information about patients suffering from
mental health problems and the treatments that they have received.

▶ Most mental health patients do not require dedicated hospital treatment but
need to attend specialist clinics regularly where they can meet a doctor who
has detailed knowledge of their problems.

▶ To make it easier for patients to attend, these clinics are not just run in
hospitals. They may also be held in local medical practices or community
centres.

MHC-PMS

▶ The MHC-PMS (Mental Health Care-Patient Management System) is an
information system that is intended for use in clinics.

▶ It makes use of a centralized database of patient information but has also
been designed to run on a PC, so that it may be accessed and used from sites
that do not have secure network connectivity.

▶ When the local systems have secure network access, they use patient
information in the database but they can download and use local copies of
patient records when they are disconnected.

MHC-PMS goals

▶ To generate management information that allows health service managers to
assess performance against local and government targets.

▶ To provide medical staff with timely information to support the treatment of
patients.

The organization of the MHC-PMS

MHC-PMS key features

▶ Individual care management

▶ Clinicians can create records for patients, edit the information in the system, view
patient history, etc. The system supports data summaries so that doctors can
quickly learn about the key problems and treatments that have been prescribed.

▶ Patient monitoring

▶ The system monitors the records of patients that are involved in treatment and
issues warnings if possible problems are detected.

▶ Administrative reporting

▶ The system generates monthly management reports showing the number of
patients treated at each clinic, the number of patients who have entered and left
the care system, number of patients sectioned, the drugs prescribed and their
costs, etc.

MHC-PMS concerns

▶ Privacy

▶ It is essential that patient information is confidential and is never disclosed to
anyone apart from authorised medical staff and the patient themselves.

▶ Safety

▶ Some mental illnesses cause patients to become suicidal or a danger to other
people. Wherever possible, the system should warn medical staff about potentially
suicidal or dangerous patients.

▶ The system must be available when needed otherwise safety may be compromised
and it may be impossible to prescribe the correct medication to patients.

1.3.3 Wilderness weather station

▶ The government of a country with large areas of wilderness decides to deploy
several hundred weather stations in remote areas.

▶ Weather stations collect data from a set of instruments that measure
temperature and pressure, sunshine, rainfall, wind speed and wind direction.

▶ The weather station includes a number of instruments that measure weather
parameters such as the wind speed and direction, the ground and air
temperatures, the barometric pressure and the rainfall over a 24-hour period. Each
of these instruments is controlled by a software system that takes parameter
readings periodically and manages the data collected from the instruments.

The weather station’s environment

Weather information system

 The weather station system

This is responsible for collecting weather data, carrying out some initial data

processing and transmitting it to the data management system.

 The data management and archiving system

This system collects the data from all of the wilderness weather stations, carries

out data processing and analysis and archives the data.

 The station maintenance system

This system can communicate by satellite with all wilderness weather stations to

monitor the health of these systems and provide reports of problems.

Additional software functionality

▶ Monitor the instruments, power and communication hardware and report
faults to the management system.

▶ Manage the system power, ensuring that batteries are charged whenever the
environmental conditions permit but also that generators are shut down in
potentially damaging weather conditions, such as high wind.

▶ Support dynamic reconfiguration where parts of the software are replaced
with new versions and where backup instruments are switched into the
system in the event of system failure.

SOFTWARE PROCESS MODELS

The software process

▶ A structured set of activities required to develop a software system.

▶ Many different software processes but all involve:

▶ Specification – defining what the system should do;

▶ Design and implementation – defining the organization of the system and
implementing the system;

▶ Validation – checking that it does what the customer wants;

▶ Evolution – changing the system in response to changing customer needs.

▶ A software process model is an abstract representation of a process. It
presents a description of a process from some particular perspective.

Software process descriptions

▶ When we describe and discuss processes, we usually talk about the activities
in these processes such as specifying a data model, designing a user interface,
etc. and the ordering of these activities.

▶ Process descriptions may also include:

▶ Products, which are the outcomes of a process activity;

▶ Roles, which reflect the responsibilities of the people involved in the process;

▶ Pre- and post-conditions, which are statements that are true before and after a
process activity has been enacted or a product produced.

Plan-driven and agile processes

▶ Plan-driven processes are processes where all of the process activities are
planned in advance and progress is measured against this plan.

▶ In agile processes, planning is incremental and it is easier to change the
process to reflect changing customer requirements.

▶ In practice, most practical processes include elements of both plan-driven
and agile approaches.

▶ There are no right or wrong software processes.

Software process models

▶ The waterfall model

▶ Plan-driven model. Separate and distinct phases of specification and development.

▶ Incremental development

▶ Specification, development and validation are interleaved. May be plan-driven or
agile.

▶ Reuse-oriented software engineering

▶ The system is assembled from existing components. May be plan-driven or agile.

▶ In practice, most large systems are developed using a process that
incorporates elements from all of these models.

The waterfall model
Waterfall model phases

There are separate identified phases in the waterfall model:

Requirements analysis and definition

System and software design

Implementation and unit testing

Integration and system testing

Operation and maintenance

The main drawback of the waterfall model is the difficulty

of accommodating change after the process is underway. In

principle, a phase has to be complete before moving onto

the next phase.

Waterfall model problems

▶ Inflexible partitioning of the project into distinct stages makes it difficult to
respond to changing customer requirements.

▶ Therefore, this model is only appropriate when the requirements are well-
understood and changes will be fairly limited during the design process.

▶ Few business systems have stable requirements.

▶ The waterfall model is mostly used for large systems engineering projects
where a system is developed at several sites.

▶ In those circumstances, the plan-driven nature of the waterfall model helps
coordinate the work.

Incremental development

Incremental development

▶ Incremental Development is based on the idea of developing an initial

implementation, exposing this to user comment and evolving it through
several versions until an adequate system has been developed. Specification,
development and validation activities are interleaved rather than separate,
with rapid feedback across activities.

▶ It is better for business,e-commerce and software systems.

▶ The customer can evaluate the system at a relatively early stage in the
development to see if it delivers what is required. If not, then only the
current increment has to be changed and possibly new functionality defined
for later increments.

Incremental development benefits

▶ The cost of accommodating changing customer requirements is reduced.

▶ The amount of analysis and documentation that has to be redone is much less than
is required with the waterfall model.

▶ It is easier to get customer feedback on the development work that has been
done.

▶ Customers can comment on demonstrations of the software and see how much has
been implemented.

▶ More rapid delivery and deployment of useful software to the customer is
possible.

▶ Customers are able to use and gain value from the software earlier than is possible
with a waterfall process.

Incremental development problems

▶ The process is not visible.

▶ Managers need regular deliverables to measure progress. If systems are developed
quickly, it is not cost-effective to produce documents that reflect every version of
the system.

▶ System structure tends to degrade as new increments are added.

▶ Unless time and money is spent on refactoring to improve the software, regular
change tends to corrupt its structure. Incorporating further software changes
becomes increasingly difficult and costly.

Process activities

▶ Real software processes are inter-leaved sequences of technical,
collaborative and managerial activities with the overall goal of specifying,
designing, implementing and testing a software system.

▶ The four basic process activities of specification, development, validation and
evolution are organized differently in different development processes.

▶ In the waterfall model, they are organized in sequence, whereas in
incremental development they are inter-leaved.

Software specification/requirement

Engg

▶ The process of establishing and defining what services are required from the
system and identifying the constraints on the system’s operation and
development.

▶ Is a particularly critical stage of the software process as errors at this stage
inevitably lead to later problems in system design and implementation.

▶ RE process aims to produce an agreed requirements document that specifies a
system satisfying stakeholder requirements.

▶ Requirements are presented at two levels: End users and customers need a
high level statement of the requirements; system developers need a more
detailed system specification.

The requirements engineering process

Software specification

▶ The process of establishing what services are required and the constraints on the system’s operation and development.

▶ Requirements engineering process

▶ Feasibility study

▶ Is it technically and financially feasible to build the system?

▶ Developed within the existing budgetary constraints.(cost effective)

▶ Requirements elicitation and analysis

▶ What do the system stakeholders require or expect from the system?

▶ Observations from existing systems, discussions with potential users ,task analysis.

▶ This may involve the development of one or more models and prototypes

▶ Requirements specification

▶ Is the activity of translating the information gathered during the analysis activity into a document

▶ Two types of requirements

▶ User requirements :are abstract statements of the system requirements for the customer and end user of the system.

▶ System requirements are a more detailed description of the functionality to be provided.

▶ Requirements validation

▶ Checking the validity of the requirements(consistent/complete)

Software design and implementation

▶ The process of converting the system specification into an executable system.

▶ Software design

▶ Design a software structure that realises the specification;

▶ Implementation

▶ Translate this structure into an executable program;

▶ The activities of design and implementation are closely related and may be
inter-leaved.

Software design and implementation

▶ Software platform-the environment in which software will execute.

▶ Information about this platform is an essential input to the design process,as
designers must decide how best to integrate it with the software ‘s
environment.

▶ The requirement specification is the description of the functionality the
software must provide and its performance and dependability requirements.

▶ If the system is to process existing data, then the description of that data
may be included in the platform specification.

▶ Otherwise ,the data description must be an input to the design process so
that the system data organization to be defined.

A general model of the design process

Design activities

▶ Architectural design, where you identify the overall structure of the system,
the principal components (sometimes called sub-systems or modules), their
relationships and how they are distributed.

▶ Interface design, where you define the interfaces between system
components. This interface specification must be unambiguous.

▶ Component design, where you take each system component and design how it
will operate.

▶ Database design, where you design the system data structures and how these
are to be represented in a database. ,depends on whether an existing
database is to be reused or a new database is to be created.

▶ Design outputs

▶

▶

▶

▶

System Architecture

Database Specification

Interface specification

Component specification

Software validation

▶ Verification and validation (V & V) is intended to show that a system conforms
to its specification and meets the requirements of the system customer.

▶ Validation involves checking and review processes and system testing.

▶ System testing involves executing the system with test cases that are derived
from the specification of the real data to be processed by the system.

▶ Testing is the most commonly used V & V activity.

Stages of testing

.3 stage process

System components are tested(component defects are discovered early in the

process)

then the integrated system is tested,(interface problems are found when the

system is integrated)

Finally the system is tested with the customers data.

Testing stages

▶ Development or component testing

▶ Individual components are tested independently;

▶ Components may be functions or objects or coherent groupings of these entities.

▶ Test automation tools such as JUnit that can rerun component tests when new versions of the
components are created, are commonly used.

▶ System testing

▶ Testing of the system as a whole.

▶ Concerned with showing the system meets its functional and non functional requirements ,
Testing of emergent properties is particularly important.

▶ Acceptance testing(alpha testing)

▶ This is the final stage in the testing process before the system is accepted for operational use.

▶ Testing with customer data to check that the system meets the customer’s needs.

Testing phases in a plan-driven software

process(v model of development)

▶ Acceptance testing(alpha testing)

▶ Alpha Testing is a type of software testing performed to identify bugs before releasing the product to real
users or to the public. Alpha Testing is one of the user acceptance testing.

▶ Custom systems are developed for a single client

▶ This alpha testing process continues until the system developer and the client agree that the delivered system
is an acceptable implementation of requirements.

Beta testing

 When software is to be marketed as a software product ,beta testing is used.

 Beta Testing is performed by real users of the software application in a real environment.

 This involves delivering a system to a number of potential users who agree to use that system.

 They report problem to system developers.

 This exposes the product to real use and detects errors that may not have been anticipated by the system
builders.

 After this feedback,the system is modified and released either for further beta testing or general sale.

https://www.geeksforgeeks.org/?p=294134

Alpha Testing Beta Testing

Alpha testing involves both the white box and black box testing.

Beta testing commonly uses black box testing.

Alpha testing is performed by testers who are usually internal

employees of the organization.

Beta testing is performed by clients who are not part of the

organization.

Alpha testing is performed at developer’s site.

Beta testing is performed at end-user of the product.

Reliability and security testing are not checked in alpha testing.

Reliability, security and robustness are checked during beta testing.

Alpha testing ensures the quality of the product before forwarding to

beta testing.

Beta testing also concentrates on the quality of the product but

collects users input on the product and ensures that the product is

ready for real time users.

Alpha testing requires a testing environment or a lab.

Beta testing doesn’t require a testing environment or lab.

Alpha testing may require long execution cycle.

Beta testing requires only a few weeks of execution.

Developers can immediately address the critical issues or fixes in

alpha testing.

Most of the issues or feedback collected from beta testing will be

implemented in future versions of the product.

Software evolution

▶ Software is inherently flexible and can change.

▶ As requirements change through changing business circumstances, the
software that supports the business must also evolve and change.

▶ Although there has been a demarcation between development and evolution
(maintenance) this is increasingly irrelevant as fewer and fewer systems are
completely new.

Key points

▶ Software processes are the activities involved in producing a software system.
Software process models are abstract representations of these processes.

▶ General process models describe the organization of software processes. Examples
of these general models include the ‘waterfall’ model, incremental development,
and reuse-oriented development.

▶ Requirements engineering is the process of developing a software specification.

▶ Design and implementation processes are concerned with transforming a
requirements specification into an executable software system.

▶ Software validation is the process of checking that the system conforms to its
specification and that it meets the real needs of the users of the system.

▶ Software evolution takes place when you change existing software systems to
meet new requirements. The software must evolve to remain useful.

Coping with change

▶ Change is inevitable in all large software projects.

▶ Business changes lead to new and changed system requirements

▶ New technologies open up new possibilities for improving implementations

▶ Changing platforms require application changes

▶ Change leads to rework so the costs of change include both rework (e.g. re-
analyzing requirements) as well as the costs of implementing new
functionality

Reducing the costs of rework

▶ Change avoidance, where the software process includes activities that can
anticipate possible changes before significant rework is required.

▶ For example, a prototype system may be developed to show some key features of the
system to customers.

▶ Change tolerance, where the process is designed so that changes can be
accommodated at relatively low cost.

▶ This normally involves some form of incremental development. Proposed changes may be
implemented in increments that have not yet been developed. If this is impossible, then
only a single increment (a small part of the system) may have be altered to incorporate
the change.

Two ways of coping with change and changing system requirements:

Prototyping

Increment delivery

Software prototyping

▶ A prototype is an initial version of a system used to demonstrate concepts and try
out design options, and find out more about the problem and its possible
solutions.

▶ Where a version of the system or part of the system is developed quickly to check
the customer requirements .

▶ Rapid ,iterative development of the prototype is essential ,so that costs are
controlled and system stakeholders can experiment with the prototype early in the
software process.

▶ A prototype can be used in:

▶ The requirements engineering process to help with requirements elicitation and
validation;

▶ In design processes to explore particular software solutions options and develop a UI
design;

▶ In the testing process to run back-to-back tests.

Benefits of prototyping

▶ Improved system usability.

▶ A closer match to users’ real needs.

▶ Improved design quality.

▶ Improved maintainability.

▶ Reduced development effort.

The process of prototype development

Prototype development process

▶ May be based on rapid prototyping languages or tools

▶ May involve leaving out functionality

▶ Prototype should focus on areas of the product that are not well-understood;

▶ Error checking and recovery may not be included in the prototype;

▶ Focus on functional rather than non-functional requirements such as reliability and
security

Throw-away prototypes

▶ Prototypes should be discarded after development as they are not a good
basis for a production system:

▶ It may be impossible to tune the system to meet non-functional requirements;

▶ Prototypes are normally undocumented;

▶ The prototype structure is usually degraded through rapid change;

▶ The prototype probably will not meet normal organisational quality standards.

Incremental development and delivery

▶ Incremental development

▶ Develop the system in increments and evaluate each increment before proceeding
to the development of the next increment;

▶ Normal approach used in agile methods;

▶ Evaluation done by user/customer proxy.

▶ Incremental delivery

▶ Deploy an increment for use by end-users;

▶ More realistic evaluation about practical use of software;

▶ Difficult to implement for replacement systems as increments have
functionality than the system being replaced.

less

Incremental delivery

▶ Rather than deliver the system as a single delivery, the development and delivery is broken down
into increments with each increment delivering part of the required functionality.

Incremental delivery

▶ Is an approach to software development where some of the developed increments are delivered to
the customer and deployed for use in an operational environment.

▶ In an incremental delivery process ,the customer identify the services to be provided by the system.

▶ They identify which services are most/less important.

▶ User requirements are prioritised and the highest priority requirements are included in early
increments.

▶ Once the development of an increment is started, the requirements are frozen though requirements
for later increments can continue to evolve.

▶ Once an increment is completed and delivered, customers can put into service. This means that
they take early delivery of part of the system functionality.

▶ They can experiment with the system and helps to clarify their requirements for later system
increments.

▶ As new increments are completed ,they are integrated with the existing increments so that
functionality improves with each delivered increment.

Incremental delivery

Incremental delivery advantages

▶ Customer value can be delivered with each increment so system functionality
is available earlier.

▶ Early increments act as a prototype to help elicit requirements for later
increments.

▶ Lower risk of overall project failure.

▶ The highest priority system services tend to receive the most testing.

Incremental delivery problems

▶ Most systems require a set of basic facilities that are used by different parts
of the system.

▶ As requirements are not defined in detail until an increment is to be implemented,
it can be hard to identify common facilities that are needed by all increments.

▶ The essence of iterative processes is that the specification is developed in
conjunction with the software.

▶ However, this conflicts with the procurement model of many organizations, where
the complete system specification is part of the system development contract.

Boehm’s spiral model

▶ Process is represented as a spiral rather than as a sequence of activities with
backtracking.

▶ Each loop in the spiral represents a phase in the process.

▶ The innermost loop might be concerned with system feasibility,next is
requirement definition,system design,….

▶ No fixed phases such as specification or design - loops in the spiral are chosen
depending on what is required.

▶ Risks are explicitly assessed and resolved throughout the process.

Spiral model sectors

▶ Objective setting

▶ Specific objectives for the phase are identified.

▶ Constraints on the process and the product are identified and a detailed management
plan is drawn up.

▶ Project risks are identified.

▶ Risk assessment and reduction

▶ Risks are assessed and activities put in place to reduce the key risks.

▶ Development and validation

▶ A development model for the system is chosen which can be any of the generic models.

▶ Planning

▶ The project is reviewed and the next phase of the spiral is planned.

Spiral model usage

▶ Spiral model has been very influential in helping people think about iteration
in software processes and introducing the risk-driven approach to
development.

▶ In practice, however, the model is rarely used as published for practical
software development.

AGILE software development

▶ Rapid development and delivery is now often the most important requirement
for software systems

▶ Businesses operate in a fast –changing requirement and it is practically impossible
to produce a set of stable software requirements

▶ Software has to evolve quickly to reflect changing business needs.

▶ Agile development

▶ Specification, design and implementation are inter-leaved

▶ System is developed as a series of versions with stakeholders involved in version
evaluation

▶ Extensive tool support is used to support the development process.

▶ User interfaces are often developed using an IDE and graphical toolset.

Agile methods

▶ Dissatisfaction with the overheads involved in software design
methods of the 1980s and 1990s led to the creation of agile
methods. These methods:

▶ Focus on the code rather than the design

▶ Are based on an iterative approach to software development

▶ Are intended to deliver working software quickly and evolve this
quickly to meet changing requirements.

▶ The aim of agile methods is to reduce overheads in the
software process (e.g. by limiting documentation) and to be
able to respond quickly to changing requirements without
excessive rework.

Plan driven/agile

Agile manifesto

▶ We are uncovering better ways of developing  software by doing it and
helping others do it.  Through this work we have come to value:

▶ Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

▶ That is, while there is value in the items on  the right, we value the items
on the left more.

The principles of agile methods

Agile development techniques:XP

release cycle

In XP, requirements are

expressed as scenarios (called

user stories), which are

implemented directly as a series

of tasks. Programmers work in

pairs and develop tests for each

task before writing the code. All

tests must be successfully

executed when new code is

integrated into the system. There

is a short time gap between

releases of the system.

Extreme programming was an agile practices that were

summarized and reflect the principles of the agile

manifesto:

▶ 1. Incremental development is supported through small, frequent releases of the

system. Requirements are based on simple customer stories or scenarios that are
used as a basis for deciding what functionality should be included in a system
increment.

▶ 2. Customer involvement is supported through the continuous engagement of the
customer in the development team. The customer representative takes part in the
development and is responsible for defining acceptance tests for the system.

▶ 3. People, not process, are supported through pair programming, collective
ownership of the system code, and a sustainable development process that does
not involve excessively long working hours.

▶ 4. Change is embraced through regular system releases to customers, test-first
development, refactoring to avoid code degeneration, and continuous integration
of new functionality.

▶ 5. Maintaining simplicity is supported by constant refactoring that improves code
quality and by using simple designs that do not unnecessarily anticipate future
changes to the system.

Extreme programming practices

XP practices
▶ User stories:

▶ Software requirements always change. In Agile methods , requirements elicitation
is integrated with development by the idea of “user stories” where a user story is
a scenario of use that might be experienced by a system user.

▶ After the discussion of development team with customer, they develop a “story
card” that briefly describes a story that encapsulates the customer needs. The
development team then aims to implement that scenario in a future release of the
software.

▶ User stories may be used in planning system iterations. Once the story cards have
been developed, the development team breaks these down into tasks and
estimates the effort and resources required for implementing each task.

▶ This usually involves discussions with the customer to refine the requirements. The
customer then prioritizes the stories for implementation, choosing those stories
that can be used immediately to deliver useful business support.

▶ The intention is to identify useful functionality that can be implemented in about
two weeks, when the next release of the system is made available to the
customer.

▶ If changes are required for a system that has already been delivered, new story
cards are developed and again, the customer decides whether these changes
should have priority over new functionality.

▶ User stories can be helpful in getting users involved in suggesting requirements
during an initial predevelopment requirements elicitation activity.

▶ Cons:

▶ The principal problem with user stories is completeness. It is difficult to judge if
enough user stories have been developed to cover all of the essential
requirements of a system.

▶ It is also difficult to judge if a single story gives a true picture of an activity.
Experienced users are often so familiar with their work that they leave things out
when describing it.

▶ Refactoring:

▶ Changes will always have to be made to the code being developed. Refactoring
means that the programming team look for possible improvements to the software
and implements them immediately.

▶ Refactoring improves the software structure and readability and avoids the
structural deterioration that naturally occurs when software is changed.

Test-first development:

▶ Extreme Programming developed a new approach to program testing to address
the difficulties of testing without a specification. Testing is automated and is
central to the development process, and development cannot proceed until all
tests have been successfully executed. The key features of testing in XP are:

1. test-first development:

▶ Write test before write the code.

▶ Writing tests implicitly defines both an interface and a specification of behaviour
for the functionality being developed.

▶ Problems of requirements and interface misunderstandings are reduced.

▶ Test-first development requires there to be a clear relationship between system
requirements and the code implementing the corresponding requirements.

▶ In XP, this relationship is clear because the story cards representing the
requirements are broken down into tasks and the tasks are the principal unit of
implementation.

▶ In test-first development, the task implementers have to thoroughly understand
the specification so that they can write tests for the system.

▶ This means that ambiguities and omissions in the specification have to be clarified
before implementation begins. It also avoids the problem of “test-lag.” This may
happen when the developer of the system works at a faster pace than the tester.

2. Incremental test development from scenarios,

▶ Develop each tasks, so that the development schedule can be maintained.

3. User involvement in the test development and validation, and

▶ The role of the customer in the testing process is to help develop acceptance
tests for the stories that are to be implemented in the next release of the
system.

4. The use of automated testing frameworks.

▶ Test automation is essential for test-first development. Tests are written
as executable Components before the task is implemented. These testing
components should be stand-alone, should simulate the submission of input to
be tested, and should check that the result meets the output specification.

▶ An automated test framework is a system that makes it easy to write
executable tests and submit a set of tests for execution. JUnit is a widely
used example of an automated testing framework for Java programs.

Pair programming:

▶ The programming pair sits at the same computer to develop the software.
However, the same pair do not always program together. Rather, pairs are created
dynamically so that all team members work with each other during the
development process.

Pair programming has a number of advantages.

1. It supports the idea of collective ownership and responsibility for the system.
This reflects Weinberg’s idea of egoless programming where the software is owned by
the team as a whole and individuals are not held responsible for problems with the
code. Instead, the team has collective responsibility for resolving these problems.

2. It acts as an informal review process because each line of code is looked at by at
least

two people.

3. It encourages refactoring to improve the software structure.

Agile Project Management

▶ The principal responsibility of software project managers is to manage the
project so that the software is delivered on time and within the planned
budget for the project.

▶ Scrum

▶ The Scrum approach is a general agile method and focus is on managing
iterative development rather than specific agile practices.

▶ The Scrum Process

The Sprint Cycle

▶ Each process iteration produces a product increment that could be delivered to customers.

▶ The starting point for planning is the product backlog, which is the list of work to be done
on the project. —the list of items such as product features, requirements, user stories and
engineering improvement that have to be worked on by the Scrum team.

▶ The product owner has a responsibility to ensure the level of specification is appropriate for
the work to be done.

▶ Each sprint cycle lasts a fixed length of time, which is usually between 2 and 4 weeks. At the
beginning of each cycle, the Product Owner prioritizes the items on the product backlog to
define which are the most important items to be developed in that cycle.

▶ Sprints are never extended to take account of unfinished work. Items are returned to the
product backlog if these cannot be completed within the allocated time for the sprint.

▶ The whole team is then involved in selecting which of the highest priority items they believe
can be completed. They then estimate the time required to complete these items. To make
these estimates, they use the velocity attained in previous sprints, that is, how much of the
backlog could be covered in a single sprint. This leads to the creation of a sprint backlog—
the work to be done during that sprint.

▶ The team self-organizes to decide who will work on what, and the sprint begins.

Teamwork in Scrum

▶ The ‘Scrum master’ is a facilitator who arranges daily meetings, tracks the backlog of work
to be done, records decisions, measures progress against the backlog and communicates
with customers and management outside of the team.

▶ The whole team attends short daily meetings (scrum)where all team members share
information, describe their progress since the last meeting, problems that have arisen and
what is planned for the following day.

▶ This means that everyone on the team knows what is going on and, if problems arise, can
re-plan short-term work to cope with them, there is no top-down direction from the Scrum
Master.

▶ Everyone participates in this short-term planning; the daily interactions among Scrum
teams may be coordinated using a Scrum board. This is an office whiteboard that includes
information and post-it notes about the Sprint backlog, work done, unavailability of staff,
and so on. This is a shared resource for the whole team, and anyone can change or move
items on the board. It means that any team member can, at a glance, see what others are
doing and what work remains to be done.

▶ At the end of each sprint, there is a review meeting, which involves the whole team. This
meeting has two purposes. First, it is a means of process improvement. The team reviews
the way they have worked and reflects on how things could have been done better. Second,
it provides input on the product and the product state for the product backlog review that
precedes the next sprint

Scrum benefits

▶ The product is broken down into a set of manageable and understandable
chunks.

▶ Unstable requirements do not hold up progress.

▶ The whole team have visibility of everything and consequently team
communication is improved.

▶ Customers see on-time delivery of increments and gain feedback on how the
product works.

▶ Trust between customers and developers is established and a positive culture
is created in which everyone expects the project to succeed.

▶ For offshore development, the product owner is in a different country from
the development team, which may also be distributed. Figure shows the
requirements for Distributed Scrum

Key points

▶ Agile methods are incremental development methods that focus on rapid
development, frequent releases of the software, reducing process overheads
and producing high-quality code. They involve the customer directly in the
development process.

▶ The decision on whether to use an agile or a plan-driven approach to
development should depend on the type of software being developed, the
capabilities of the development team and the culture of the company
developing the system.

▶ Extreme programming is a well-known agile method that integrates a range of
good programming practices such as frequent releases of the software,
continuous software improvement and customer participation in the
development team.

Key points

▶ A particular strength of extreme programming is the development of
automated tests before a program feature is created. All tests must
successfully execute when an increment is integrated into a system.

▶ The Scrum method is an agile method that provides a project management
framework. It is centred round a set of sprints, which are fixed time periods
when a system increment is developed.

▶ Scaling agile methods for large systems is difficult. Large systems need up-
front design and some documentation.

Module 2 :

Requirement Analysis and Design (8 hours)

Functional and non-functional requirements, Requirements engineering

processes. Requirements elicitation, Requirements validation,

Requirements change,Traceability Matrix.

Developing use cases, Software Requirements Specification Template,

Personas, Scenarios, User stories, Feature identification.

Design concepts - Design within the context of software engineering, Design

Process, Design concepts, Design Model.

Architectural Design - Software Architecture, Architectural Styles,

Architectural considerations, Architectural Design

Component level design - What is a component?, Designing Class-Based

Components, Conducting Component level design, Component level design

for web-apps

. Template of a Design Document as per “IEEE Std 1016-2009 IEEE Standard

for Information Technology Systems Design Software Design Descriptions”.

Case study: The Ariane 5 launcher failure.

1

Requirements engineering

▶ The process of establishing the services that the
customer requires from a system and the constraints
under which it operates and is developed.

▶ The requirements themselves are the descriptions of
the system services and constraints that are generated
during the requirements engineering process.

▶ It may range from a high-level abstract statement of a
service or of a system constraint to a detailed
mathematical functional specification.

2

Types of requirement

▶ User requirements

▶ Statements in natural language plus diagrams of the
services the system provides and its operational
constraints. Written for customers.

▶ System requirements

▶ A structured document setting out detailed descriptions of
the system’s functions, services and operational
constraints. Defines what should be implemented so may

be part of a contract between client and contractor.

3

User and system requirements

BMCE

4

Readers of different types of

requirements specification

5

Functional and non-functional requirements

▶ Functional requirements

▶ Statements of services the system should provide, how the
system should react to particular inputs and how the system
should behave in particular situations.

▶ May state what the system should not do.

▶ Non-functional Requirement
▶ Constraints on the services or functions offered by the system
such as timing constraints, constraints on the development process,
standards, etc.

▶ Often apply to the system as a whole rather than individual features or
services.

▶ Domain requirements

▶ Constraints on the system from the domain of operation

6

Functional requirements

▶ Describe functionality or system services.

▶ Depend on the type of software, expected users and the
type of system where the software is used.

▶ Functional user requirement high-level

statements of what the system should do.

▶ Functional system requirements should describe the
system services in detail.

7

Functional requirements for

the MHC-PMS

▶ A user shall be able to search the appointments lists for
all clinics.

▶ The system shall generate each day, for each clinic, a
list of patients who are expected to attend
appointments that day

▶ Each staff member using the system shall be uniquely
identified by his or her 8-digit employee number.

8

Non-functional requirements

▶ These define system properties and constraints e.g.
reliability, response time and storage requirements.
Constraints are I/O device capability, system
representations, etc.

▶ Process requirements mayalsoobe specified mandating a
particular IDE, programming language or development
method.

▶ Non-functional requirements may be more critical than
functional requirements. If these are not met, the
system may be useless.

9

Types of nonfunctional

requirement

10

Non-functional classifications

▶ Product requirements

▶ Requirements which specify that the delivered product
must behave in a particular way e.g. execution speed,
reliability, etc.

▶ Organizational requirements

▶ Requirements which are a consequence of
organisational policies and procedures e.g. process
standards used, implementation requirements, etc.

▶ External requirements

▶ Requirements which arise from factors which are
external to the system and its development process
e.g. interoperability requirements, legislative
requirements, etc.

11

Usability requirements

▶ The system should be easy to use by medical staff and
should be organized in such a way that user errors are
minimized. (Goal)

▶ Medical staff shall be able to use all the system
functions after fourr hours training. After this
training, the average number of errors made by

experienced users shall not exceed two per hour of

system use. (Testable non-functional requirement)

12

BM CE

Metrics for specifying nonfunctional

requirements

13

Property Measure

Speed Processed transactions/second

User/event response time

Screen refresh time

Size Mbytes

Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure

Probability of unavailability

Rate of failure occurrence

Availability

Robustness Time to restart after failure

Percentage of events causing failure

Probability of data corruption on failure

Portability Percentage of target dependent statements

Number of target systems

Key points

▶ Requirements for a software system set out what the
system should do and define constraints on its operation
and implementation.

▶ Functional requirements are statements of the services
that the systems must provide are descriptions of how
some computations must be carried out.

▶ Non-functional requirements often constrain the system
being developed and the development process being
used.

▶ They often relate to the emergent properties of the
system and therefore apply to the system as a whole.

14

Requirements engineering

processes

▶ The processes used for RE vary widely depending on the
application domain, the people involved and the organisation
developing the requirements.

▶ However, there are a number of generic activities common to all
processes

▶ Requirements elicitation;

▶ Requirements analysis;

▶ Requirements validation;

▶ Requirements management.

▶ In practice, RE is an iterative activity in which these processes
are interleaved.

15

A spiral view of the requirements

engineering process

16

1. Requirements elicitation

and analysis

▶ Sometimes called requirements elicitation or
requirements discovery.

▶ Involves technical staff working with
customers to find out about the application
domain, the services that system should
provide and the system’s operational
constraints.

▶ May involve end-users, managers, engineers
involved in maintenance, domain experts,
trade unions, etc. These are called
stakeholders.

17

Problems of requirements analysis

▶ Stakeholders don’t know what they really
want.

▶ Stakeholders express requirements in their
own terms.

▶ Different stakeholders may have conflicting
requirements.

▶ Organisational and political factors may
influence the system requirements.

▶ The requirements change during the analysis
process. New stakeholders may emerge and
the business environment may change.

18

Requirements elicitation and

analysis
▶ Software engineers work with a range of system stakeholders to

find out about the application domain, the services that the
system should provide, the required system performance,
hardware constraints, other systems, etc.

▶ Stages include:

▶ Requirements discovery and understanding: process of interacting
with stake holders to discover their requirements.

▶ Requirements classification and organization :this activity takes the

unstructured collection of requirements, groups related requirements
and organizes them into coherent clusters.

▶ Requirements prioritization and negotiation: when multiple

stakeholders are involved ,requirements will conflict. This activity is
concerned with prioritizing requirements and finding and resolving
requirements conflicts through negotiation.

▶ Requirements specification(documentation):requirements are
documented and input into the next round of spiral.

19

The requirements elicitation

and analysis process

20

Requirements

discovery(elicitation techniques)

▶ The process of gathering information about the required
and existing systems and distilling the user and system
requirements from this information.

▶ Interaction is with system stakeholders from managers
to external regulator

▶ Systems normally have a range of stakeholders.

21

Stakeholders in the MHC-PMS

▶ Patients whose information is recorded in the system.

▶ Doctors who are responsible for assessing and treating
patients.

▶ Medical receptionists who manage patients’

appointments.

▶ IT staff who are responsible for installing and
maintaining the system.

22

Reqmt Elicitation

Techniques:1.Interviewing

▶ Formal or informal interviews with stakeholders are part of
most RE processes.

▶ Types of interview

▶ Closed interviews : stakeholders answers based on pre-
determined list of questions

▶ Open interviews :in which there is no predefined
agenda,where various issues are explored with stakeholders.

▶ Effective interviewing

▶ Be open-minded, avoid pre-conceived ideas about the
requirements and are willing to listen to stakeholders.

▶ Prompt the interviewee to get discussions going using a
springboard question, a requirements proposal, or by working
together on a prototype system.

23

2. Stories and Scenarios

▶ Scenarios are real-life examples of how a system can be
used.

▶ They should include

▶ A description of the starting situation;

▶ A description of the normal flow of events;

▶ A description of what can go wrong;

▶ Information about other concurrent activities;

▶ A description of the state when the scenario finishes.

24

3. Ethnography

▶ A social scientist spends a considerable
time observing and analysing how people
actually work.

▶ Social and organisational factors of

importance may be observed.

▶ Ethnographic studies have shown that
work is usually richer and more complex
than suggested by simple system models.

25

Scope of ethnography

▶ Requirements that are derived from cooperation and
awareness of other people’s activities.

▶ Awareness of what other people are doing leads to
changes in the ways in which we do things.

26

Focused ethnography

▶ Developed in a project studying the air traffic control
process

▶ Combines ethnography with prototyping

▶ The problem with ethnography is that it studies existing
practices which may have some historical basis which is
no longer relevant.

27

Ethnography and prototyping

for requirements analysis

28

2. Requirements specification

▶ The process of writing don the user and system
requirements in a requirements document.

▶ User requirements have to be understandable by end-
users and customers who do not have a technical
background.

▶ System requirements are more detailed requirements
and may include more technical information.

▶ The requirements may be part of a contract for the
system development

▶ It is therefore important that these are as complete as
possible.

29

BMCE

30

Ways of writing a system

requirements specification
Notation Description

Natural language The requirements are written using numbered sentences in natural language.

Each sentence should express one requirement.

Structured natural

language

The requirements are written in natural language on a standard form or

template. Each field provides information about an aspect of the

requirement.

Design description

languages
This approach uses a language like a programming language, but with more

abstract features to specify the requirements by defining an operational

model of the system. This approach is now rarely used although it can be

useful for interface specifications.

Graphical notations Graphical models, supplemented by text annotations, are used to define the

functional requirements for the system; UML use case and sequence

diagrams are commonly used.

Mathematical

specifications

These notations are based on mathematical concepts such as finite-state

machines or sets. Although these unambiguous specifications can reduce

the ambiguity in a requirements document, most customers don’t understand

a formal specification. They cannot check that it represents what they want

and are reluctant to accept it as a system contract

Natural language

specification

▶ Requirements are written as natural language sentences
supplemented by diagrams and tables.

▶ Used for writing requirements because it is expressive,
intuitive and universal.

31

Guidelines for writing requirements

▶ Invent a standard format and use it for all

requirements.

▶ Use language in a consistent way. Use shall for
mandatory requirements, should for desirable
requirements.

▶ Use text highlighting to identify key parts of the
requirement.

▶ Avoid the use of computer jargon.

▶ Include an explanation (rationale) of why a requirement
is necessary.

32

Problems with natural

language

▶ Lack of clarity

▶ Precision is difficult without making the document difficult
to read.

▶ Requirements confusion

▶ Functional and non-functional requirements tend to be
mixed-up.

▶ Requirements amalgamation

▶ Several different requirements may be expressed together.

33

Structured specifications

▶ An approach to writing requirements where the
freedom of the requirements writer is limited and
requirements are written in a standard way.

▶ This works well for some types of requirements

34

Form-based specifications

▶ Definition of the function or entity.

▶ Description of inputs and where they come from.

▶ Description of outputs and where they go to.

▶ Description of the action to be taken.

▶ Pre and post conditions (if appropriate).

▶ The side effects (if any) of the function.

35

Tabular specification

▶ Used to supplement natural language.

▶ Particularly useful when you have to define a number of
possible alternative courses of action.

36

Use cases

▶ Use-cases are a scenario based technique in the UML
which identify the actors in an interaction and which
describe the interaction itself.

37

Developing Use cases

▶ A use case tells a stylized story about how an end user (playing one of a
number of possible roles) interacts with the system under a specific c set of
circumstances.

▶ The story may be narrative text, an outline of tasks or interactions, a
template-based description, or a diagrammatic representation.

▶ The first step in writing a use case is to define the set of “actors” that will be

involved in the story.

▶ Actors are the different people (or devices) that use the system or product
within the context of the function and behavior that is to be described.

▶ Actors represent the roles that people (or devices) play as the system
operates.

▶ An actor is anything that communicates with the system or product and that
is external to the system itself.

38

Use cases for the MHC-PMS

39

3. Requirements validation

▶ Concerned with demonstrating that the requirements
define the system that the customer really wants.

▶ Requirements error costs are high so validation is very
important.

40

Requirements checking

▶ Validity. Does the system provide the
functions which best support the customer’s
needs?

▶ Consistency. Are there any requirements
conflicts?

▶ Completeness. Are all functions required by
the customer included?

▶ Realism. Can the requirements be
implemented given available budget and
technology

▶ Verifiability. Can the requirements be
checked?

41

Requirements validation techniques

▶ Requirements reviews

▶ Systematic manual analysis of the
requirements:requirements are analysed systematically by
a team of reviewers who check for errors and
inconsistencies.

▶ Prototyping

▶ Using an executable model of the system to check
requirements.

▶ Test-case generation

▶ Developing tests for requirements to check testability.

42

The software requirements

document

▶ The software requirements document is the official
statement of what is required of the system developers.

▶ Should include both a definition of user requirements
and a specification of the system requirements.

43

Users of a requirements

document

44

BMCE

45

The structure of a requirements

document

Chapter Description

Preface This should define the expected readership of the document and describe

its version history, including a rationale for the creation of a new version

and a summary of the changes made in each version.

Introduction This should describe the need for the system. It should briefly describe the

system’s functions and explain how it will work with other systems. It

should also describe how the system fits into the overall business or

strategic objectives of the organization commissioning the software.

Glossary This should define the technical terms used in the document. You should

not make assumptions about the experience or expertise of the reader.

User requirements

definition

Here, you describe the services provided for the user. The nonfunctional

system requirements should also be described in this section. This

description may use natural language, diagrams, or other notations that are

understandable to customers. Product and process standards that must be

followed should be specified.

System architecture This chapter should present a high-level overview of the anticipated system

architecture, showing the distribution of functions across system modules.

Architectural components that are reused should be highlighted.

BMCE

The structure of a

requirements document
Chapter Description

System

requirements

specification

This should describe the functional and nonfunctional requirements in more detail.

If necessary, further detail may also be added to the nonfunctional requirements.

Interfaces to other systems may be defined.

System models This might include graphical system models showing the relationships between

the system components and the system and its environment. Examples of

possible models are object models, data-flow models, or semantic data models.

System evolution This should describe the fundamental assumptions on which the system is based,

and any anticipated changes due to hardware evolution, changing user needs,

and so on. This section is useful for system designers as it may help them avoid

design decisions that would constrain likely future changes to the system.

Appendices These should provide detailed, specific information that is related to the

application being developed; for example, hardware and database descriptions.

Hardware requirements define the minimal and optimal configurations for the

system. Database requirements define the logical organization of the data used

by the system and the relationships between data.

Index Several indexes to the document may be included. As well as a normal alphabetic

index, there may be an index of diagrams, an index of functions, and so on.
46

BMCE

47

Requirements management

▶ Requirements management is the process
of managing changing requirements
during the requirements engineering
Process and system management

▶ New requirements emerge as a system is being
developed and after it has gone into use.

▶ You need to keep track of individual requirements and

maintain links between dependent requirements so that
you can assess the impact of requirements changes. You
need to establish a formal process for making change
proposals and linking these to system requirements.

48

Changing requirements

▶ The business and technical environment of the system
always changes after installation.

▶ The people who pay for a system and the users of that

system are rarely the same people.

▶ System customers impose requirements because of
organizational and budgetary constraints. These may
conflict with end-user requirements and, after delivery,
new features may have to be added for user support if the
system is to meet its goals.

49

Changing requirements

▶ Large systems usually have a diverse user community,
with many users having different requirements and
priorities that may be conflicting or contradictory.

50

Requirements evolution

51

Requirements management planning

▶ Establishes the level of requirements management detail that is required.

▶ Requirements management decisions:

▶ Requirements identification Each requirement must be uniquely identified so that it
can be cross-referenced with other requirements.

▶ A change management process This is the set of activities that assess the impact
and cost of changes. I discuss this process in more detail in the following section.

▶ Traceability policies These policies define the relationships between each
requirement and between the requirements and the system design that should be
recorded.

▶ Tool support Tools that may be used range from specialist requirements
management systems to spreadsheets and simple database systems.

52

Requirements change

management

▶ Deciding if a requirements change should be accepted

▶ Problem analysis and change specification

▶ Change analysis and costing

▶ The effect of the proposed change is assessed using traceability
information and general knowledge of the system requirements.
Once this analysis is completed, a decision is made whether or not
to proceed with the requirements change.

▶ Change implementation

▶ The requirements document and, where necessary, the system
design and implementation, are modified. Ideally, the document
should be organized so that changes can be easily implemented.

53

Requirements change management

54

Traceability Matrix

▶ Is an Engg team that refers to documented links
between Software Engg work products(eg Requirements
and test cases)

▶ Rows of the matrix are labelled using requirement
names and columns can be labelled with the name of
software engg work product.

▶ A matrix cell is marked to indicate the presence of link
between the two.

55

▶ This matrix can support a variety of engg development
activities.

▶ They can provide continuity for developers as a project
moves from one project phase to another.

▶ It can be used to ensure the engg work products have
taken all requirements into account.

56

Implementation and Testing
(9 hours)

Module III

Object-oriented design using the UML

• Software design and implementation is the stage in the software
engineering process at which an executable software system is
developed.

• Software design is a creative activity in which you identify software
components and their relationships, based on a customer’s
requirements.

• Implementation is the process of realizing the design as a program.

• Design and implementation are closely linked, and you should
normally take implementation issues into account when developing a
design.

Two aims:

• 1. To show how system modeling and architectural are put into
practice in developing an object-oriented software design.

• 2. To introduce important implementation issues that are not usually
covered in programming books.

These include software reuse, configuration management and open-
source development.

Object-oriented design using the UML

• An object-oriented system is made up of interacting objects that
maintain their own local state and provide operations on that state

• Object-oriented design processes involve designing object classes and
the relationships between these classes.

• Objects include both data and operations to manipulate that data.

System context and interactions

• System context models and interaction models present
complementary views of the relationships between a system and its
environment:

• A system context model is a structural model that demonstrates the
other systems in the environment of the system being developed.

• An interaction model is a dynamic model that shows how the system
interacts with its environment as it is used.

• The context model of a system may be represented using
associations.

• Associations simply show that there are some relationships between
the entities involved in the association.

• You can document the environment of the system using a simple
block diagram, showing the entities in the system and their
associations.

System context for the weather station

Weather station use cases

Usecase description-Report weather

Architectural design

• Once the interactions between the software system and the system’s
environment have been defined,

• Identify the major components that make up the system and their
interactions. Then design the system organization using an
architectural pattern such as a layered or client–server model

High-level architecture of weather station

The weather station is composed of independent
subsystems that communicate by broadcasting messages
on a common infrastructure(Communication link here)

Each subsystem listens for messages on that infrastructure
and picks up the messages that are intended for them.
This “listener model” is a commonly used architectural
style for distributed systems.

• Benefit :it is easy to support different configurations of
subsystems because the sender of a message does not
need to address the message to a particular subsystem

Architecture of data collection system

• The Transmitter and Receiver objects

are concerned with managing
communications

• The WeatherData object encapsulates
the information that is collected from
the instruments and transmitted to the
weather information system.

• This arrangement follows the
producer–consumer pattern

Object class identification

Various ways of identifying object classes in object-oriented systems :

1. Use a grammatical analysis of a natural language description of
the system to be constructed. Objects and attributes are nouns;
operations or services are verbs.

2. Use tangible entities (things) in the application domain such as
aircraft, roles such as manager, events such as request,
interactions such as meetings etc.

3. Use a scenario-based analysis where various scenarios of
system use are identified and analyzed in turn.

Weather station objects

Design models

• Two kinds of design model:

1. Structural models, which describe the static structure of the
system using object classes and their relationships.

2. Dynamic models, which describe the dynamic structure of the
system and show the expected runtime interactions between the
system objects.

Three UML model types:

1. Subsystem models, which show logical groupings of objects into
coherent subsystems. These are represented using a form of class
diagram with each subsystem shown as a package with enclosed
objects. Subsystem models are structural models.

2. Sequence models, which show the sequence of object interactions.
These are represented using a UML sequence or a collaboration
diagram. Sequence models are dynamic models.

3. State machine models, which show how objects change their state in
response to events. These are represented in the UML using state
diagrams. State machine models are dynamic models.

• A subsystem model is a useful static model that shows how a design is
organized into logically related groups of objects.

• Sequence models are dynamic models that describe, for each mode

of interaction, the sequence of object interactions that take place.

Sequence diagram describing data collection

1. The SatComms object receives a request from the weather information system
to collect a weather report from a weather station. It acknowledges receipt of this
request. The stick arrowhead on the sent message indicates that the external
system does not wait for a reply but can carry on with other processing.

2. SatComms sends a message to WeatherStation, via a satellite link, to create a
summary of the collected weather data. Again, the stick arrowhead indicates that
SatComms does not suspend itself waiting for a reply.

3. WeatherStation sends a message to a Commslink object to summarize the
weather data. In this case, the squared-off style of arrowhead indicates that the
instance of the WeatherStation object class waits for a reply.
4. Commslink calls the summarize method in the object WeatherData and waits
for a reply
5. The weather data summary is computed and returned to WeatherStation via the
Commslink object.
6. WeatherStation then calls the SatComms object to transmit the summarized
data to the weather information system, through the satellite communications
system

Weather station state diagram

1. If the system state is Shutdown, then it can respond to a restart(), a reconfigure()
or a powerSave() message. The unlabeled arrow with the black blob indicates that
the Shutdown state is the initial state. A restart() message causes a transition to
normal operation. Both the powerSave() and reconfigure() messages cause a
transition to a state in which the system reconfigures itself. The state diagram
shows that reconfiguration is allowed only if the system has been shut down.

2. In the Running state, the system expects further messages. If a shutdown()
message is received, the object returns to the shutdown state.

3. If a reportWeather() message is received, the system moves to the Summarizing
state. When the summary is complete, the system moves to a Transmitting state
where the information is transmitted to the remote system. It then returns to the
Running state.

4. If a signal from the clock is received, the system moves to the Collecting state,
where it collects data from the instruments. Each instrument is instructed in turn to
collect its data from the associated sensors.

5. If a remoteControl() message is received, the system moves to a controlled state
in which it responds to a different set of messages from the remote control room.
These are not shown on this diagram.

Interface specification

Weather station interfaces

Design Patterns

• The pattern is a description of the problem and the essence of its
solution, so that the solution may be reused in different settings. The
pattern is not a detailed specification.

• Patterns have made a huge impact on object-oriented software design

• They have become a vocabulary for talking about a design

• Patterns are a way of reusing the knowledge and experience of other
designers. Design patterns are usually associated with object-oriented
design.

• The general principle of encapsulating experience in a pattern is one
that is equally applicable to any kind of software design.

Four essential elements of design patterns

1. A name that is a meaningful reference to the pattern.

2. A description of the problem area that explains when the pattern may
be applied.

3. A solution description of the parts of the design solution, their
relationships and their responsibilities.It is a template for a design
solution that can be instantiated in different ways. This is often
expressed graphically and shows the relationships between the objects
and object classes in the solution.

4. A statement of the consequences—the results and trade-offs—of
applying the pattern. This can help designers understand whether or not
a pattern can be used in a particular situation.

Two different graphical presentations of the
same dataset:

• Graphical representations are

normally used to illustrate the
object classes in patterns and
their relationships.

• These supplement the pattern
description and add detail to
the solution description.

IMPLEMENTATION ISSUES

• Software engineering includes all of the activities involved in software
development from the initial requirements of the system through to
maintenance and management of the deployed system.

• A critical stage of this process is, of course, system implementation,
where you create an executable version of the software.

• Implementation may involve developing programs in high- or low-
level programming languages or tailoring and adapting generic, off-
the-shelf systems to meet the specific requirements of an organization.

Aspects of implementation
1. Reuse:

• Most modern software is constructed by reusing existing components or
systems. When you are developing software, you should make as much use as
possible of existing code.

2. Configuration management:
• During the development process, many different versions of each software

component are created. If you don’t keep track of these versions in a
configuration management system, you are liable to include the wrong
versions of these components in your system.

3. Host-target development
• Production software does not usually execute on the same computer as the

software development environment. Rather, you develop it on one computer
(the host system) and execute it on a separate computer (the target system)

1.Reuse
Different Levels of reuse:

1. The abstraction level: At this level, you don’t reuse software directly but
rather use knowledge of successful abstractions in the design of your
software.eg. Design patterns and architectural patterns

2. The object level: At this level, you directly reuse objects from a library
rather than writing the code yourself. To implement this type of reuse, you
have to find appropriate libraries and discover if the objects and methods
offer the functionality that you need. For example, JavaMail library.

3. The component level: Components are collections of objects and object
classes that operate together to provide related functions and services. An
example of component-level reuse is where you build your user interface
using a framework.

4. The system level: At this level, you reuse entire application systems. This
function usually involves some kind of configuration of these systems. This
may be done by adding and modifying code or by using the system’s own
configuration interface

Software reuse

Costs associated with reuse:

1. The costs of the time spent in looking for software to reuse and
assessing whether or not it meets your needs.

2. Where applicable, the costs of buying the reusable software. For
large off-theshelf systems, these costs can be very high.

3. The costs of adapting and configuring the reusable software
components or systems to reflect the requirements of the system
that you are developing.

4. The costs of integrating reusable software elements with each other
(if you are using software from different sources) and with the new
code that you have developed.

• By reusing existing software, you can develop new systems more
quickly, with fewer development risks and at lower cost. As the reused
software has been tested in other applications, it should be more
reliable than new software

• How to reuse existing knowledge and software should be the first
thing you should think about when starting a software development
project.

2. Configuration management

• Configuration management is the name given to the general process of
managing a changing software system. The aim of configuration
management is to support the system integration process so that all
developers can access the project code and documents in a controlled
way, find out what changes have been made, and compile and link
components to create a system.

• Software configuration management tools support each of the above
activities. These tools are usually installed in an integrated
development environment, such as Eclipse.

Four fundamental configuration management
activities:
• 1. Version management, where support is provided to keep track of the different

versions of software components. Version management systems include facilities
to coordinate development by several programmers. They stop one developer from
overwriting code that has been submitted to the system by someone else.

• 2. System integration, where support is provided to help developers define what
versions of components are used to create each version of a system. This
description is then used to build a system automatically by compiling and linking
the required components.

• 3. Problem tracking, where support is provided to allow users to report bugs and
other problems, and to allow all developers to see who is working on these
problems and when they are fixed.

• 4. Release management, where new versions of a software system are released to
customers. Release management is concerned with planning the functionality of
new releases and organizing the software for distribution.

3. Host-target development

• Most professional software development is based on a host-target model
.Software is developed on one computer (the host) but runs on a separate
machine (the target).

• More generally, we can talk about a development platform (host) and an
execution platform (target).

• A platform is more than just hardware. It includes the installed operating
system plus other supporting software such as a database management
system or, for development platforms, an interactive development
environment.

• Simulators are often used when developing embedded systems.

• Simulators speed up the development process for embedded systems

A software development platform should provide a range of tools to
support software engineering processes.

These may include:

1. An integrated compiler and syntax-directed editing system that allows
you to create, edit, and compile code.

2. A language debugging system.

3. Graphical editing tools, such as tools to edit UML models.

4. Testing tools, such as JUnit, that can automatically run a set of tests
on a new version of a program.

5. Tools to support refactoring and program visualization.

6. Configuration management tools to manage source code versions and
to integrate and build systems.

A general-purpose IDE is a framework for

hosting software tools that provides data

management facilities for the software

being developed and integration

mechanisms that allow tools to work

together.

The best-known general-purpose IDE is

the Eclipse environment

(http://www.eclipse.org).

Issues
1. The hardware and software requirements of a component

If a component is designed for a specific hardware architecture, or relies on
some other software system, it must obviously be deployed on a platform that
provides the required hardware and software support.

2. The availability requirements of the system
High-availability systems may require components to be deployed on more than
one platform. This means that, in the event of platform failure, an alternative
implementation of the component is available.

3. Component communications
If there is a lot of intercomponent communication, it is usually best to deploy
them on the same platform or on platforms that are physically close to one
another. This reduces communications latency—the delay between the time that
a message is sent by one component and received by another.

Open-source licensing

• A fundamental principle of open-source development is that source
code should be freely available.

• Legally, the developer of the code owns the code. They can place
restrictions on how it is used by including legally binding conditions
in an open-source software license

• Licensing issues are important because if you use open-source
software as part of a software product, then you may be obliged by the
terms of the license to make your own product open source..

• The open-source approach is one of several business models for
software.

Most open-source licenses are variants of one of three general models:

1. The GNU General Public License (GPL).

This is a so-called reciprocal license that simplistically means that if you use
open-source software that is licensed under the GPL license, then you must make
that software open source.

2. The GNU Lesser General Public License (LGPL).

This is a variant of the GPL license where you can write components that
link to open-source code without having to publish the source of these components.
However, if you change the licensed component, then you must publish this as open
source.

3. The Berkley Standard Distribution (BSD) License.

This is a nonreciprocal license, which means you are not obliged to re-
publish any changes or modifications made to open-source code. You can include
the code in proprietary systems that are sold. If you use open-source components,
you must acknowledge the original creator of the code. eg.The MIT license

Companies managing projects that use open
source should:
1. Establish a system for maintaining information about open-source components that are
downloaded and used. You have to keep a copy of the license for each component that was valid at
the time the component was used. Licenses may change, so you need to know the conditions that you
have agreed to.

2. Be aware of the different types of licenses and understand how a component is licensed before it is
used. You may decide to use a component in one system but not in another because you plan to use
these systems in different ways.

3. Be aware of evolution pathways for components. You need to know a bit about the open-source
project where components are developed to understand how they might change in future.

4. Educate people about open source. It’s not enough to have procedures in place to ensure
compliance with license conditions. You also need to educate developers about open source and
open-source licensing.

5. Have auditing systems in place. Developers, under tight deadlines, might be tempted to break the
terms of a license. If possible, you should have software in place to detect and stop this.

6. Participate in the open-source community. If you rely on open-source products, you should
participate in the community and help support their development.

MODULE - 4
SOFTWARE PROJECT MANAGEMENT

• Software project management is an essential part of software engineering.

• The success criteria for project management obviously vary from project
to project, but, for most projects, important goals are:

1. to deliver the software to the customer at the agreed time;

2. to keep overall costs within budget

3. to deliver software that meets the customer’s expectations;

4. to maintain a coherent and well-functioning development team.

• Software engineering is different from other types of engineering in a
number of ways:

1. The product is intangible.

2. Large software projects are often “one-off” projects.

3. Software processes are variable and organization-specific.

• It is impossible to write a standard job description for a software
project manager.

• Some of the most important factors that affect how software
projects are managed are:

1. Company size

2. Software customers

3. Software size

4. Software type

5. Organizational culture

6. Software development processes

• The fundamental project management activities that are common to all
organizations:

1. Project planning  Project managers are responsible for planning, estimating, and
scheduling project development and assigning people to tasks.

2. Risk management  Project managers have to assess the risks that may affect a
project, monitor these risks, and take action when problems arise.

3. People management  Project managers are responsible for managing a team of
people. They have to choose people for their team and establish ways of working
that lead to effective team performance.

4. Reporting  Project managers are usually responsible for reporting on the progress
of a project to customers and to the managers of the company developing the
software.

5. Proposal writing  The first stage in a software project may involve writing a
proposal to win a contract to carry out an item of work. The proposal describes the
objectives of the project and how it will be carried out. It usually includes cost and
schedule estimates and justifies why the project contract should be awarded to a
particular organization or team.

RISK MANAGEMENT
• Risk management is one of the most important jobs for a project

manager.

• Risk management involves anticipating risks that might affect the
project schedule or the quality of the software being developed, and
then taking action to avoid these risks.

• Risks can be categorized according to type of risk (technical,
organizational, etc.)

• Classification of risks according to what these risks affect:

1. Project risks  affect the project schedule or resources. An example of a
project risk is the loss of an experienced system architect.

2. Product risks  affect the quality or performance of the software being
developed. An example of a product risk is the failure of a purchased
component to perform as expected.

3. Business risks  affect the organization developing or procuring the
software. For example, a competitor introducing a new product is a
business risk.

• For large projects, you should record the results of the risk analysis in
a risk register along with a consequence analysis. This sets out the
consequences of the risk for the project, product, and business.

Fig: Examples of common project, product, and business risks

• Effective risk management makes it easier to cope with problems and
to ensure that these do not lead to unacceptable budget or schedule
slippage.

• For small projects, formal risk recording may not be required, but the
project manager should be aware of them.

• The specific risks that may affect a project depend on the project and
the organizational environment in which the software is being
developed.

• Software risk management is important because of the inherent
uncertainties in software development.

• An outline of the process of risk management is presented in
Figure. It involves several stages:

1. Risk identification  You should identify possible project, product,
and business risks.

2. Risk analysis  You should assess the likelihood and consequences of
these risks.

3. Risk planning  You should make plans to address the risk, either by
avoiding it or by minimizing its effects on the project.

4. Risk monitoring  You should regularly assess the risk and your
plans for risk mitigation and revise these plans when you learn more
about the risk.

• The risk management process is an iterative process that
continues throughout a project.

Fig: The Risk Management Process

Risk Identification:
• Risk identification is the first stage of the risk management process.

• It is concerned with identifying the risks that could pose a major
threat to the software engineering process, the software being
developed, or the development organization.

• Risk identification may be a team process in which a team gets
together to brainstorm possible risks.

• As a starting point for risk identification, a checklist of different types
of risk may be used.

• 6 types of risk may be included in a risk checklist:

1. Estimation risks  arise from the management estimates of the resources
required to build the system.

2. Organizational risks  arise from the organizational environment where
the software is being developed.

3. People risks  are associated with the people in the development team.

4. Requirements risks  come from changes to the customer requirements
and the process of managing the requirements change.

5. Technology risks  come from the software or hardware technologies that
are used to develop the system.

6. Tools risks  come from the software tools and other support software
used to develop the system.

Risk Analysis:
• During the risk analysis process, you have to consider each identified risk and make a

judgment about the probability and seriousness of that risk.

• It is not possible to make precise, numeric assessment of the probability and seriousness
of each risk.

• You should assign the risk to one of a number of bands:

1. The probability of the risk might be assessed as insignificant, low, moderate, high, or very high.

2. The effects of the risk might be assessed as catastrophic (threaten the survival of the project),
serious (would cause major delays), tolerable (delays are within allowed contingency), or
insignificant.

• You may then tabulate the results of this analysis process using a table ordered according
to the seriousness of the risk.

• Both the probability and the assessment of the effects of a risk may
change as more information about the risk becomes available and as
risk management plans are implemented. You should therefore
update this table during each iteration of the risk management
process.

• Once the risks have been analyzed and ranked, you should assess
which of these risks are most significant.

• In general, catastrophic risks should always be considered, as should
all serious risks that have more than a moderate probability of
occurrence.

Risk Planning:
• The risk planning process develops strategies to manage the key risks

that threaten the project.

• For each risk, you have to think of actions that you might take to
minimize the disruption to the project if the problem identified in the
risk occurs.

• You should also think about the information that you need to collect
while monitoring the project so that emerging problems can be
detected before they become serious.

• In risk planning, you have to ask “what-if” questions that consider
both individual risks, combinations of risks, and external factors that
affect these risks. For example, questions that you might ask are:

1. What if several engineers are ill at the same time?

2. What if an economic downturn leads to budget cuts of 20% for the project?

3. What if the performance of open-source software is inadequate and the
only expert on that open-source software leaves?

4. What if the company that supplies and maintains software components
goes out of business?

5. What if the customer fails to deliver the revised requirements as predicted?

• Based on the answers to these “what-if” questions, you may devise
strategies for managing the risks.

• The possible risk management strategies fall into 3 categories:

1. Avoidance strategies  Following these strategies means that the
probability that the risk will arise is reduced. An example of a risk avoidance
strategy is the strategy for dealing with defective components.

2. Minimization strategies  Following these strategies means that the
impact of the risk is reduced. An example of a risk minimization strategy is
the strategy for staff illness.

3. Contingency plans  Following these strategies means that you are
prepared for the worst and have a strategy in place to deal with it. An
example of a contingency strategy is the strategy for organizational financial
problems.

• The strategies used in critical systems ensure reliability, security, and
safety, where you must avoid, tolerate, or recover from failures.

• It is best to use a strategy that avoids the risk.

• If this is not possible, you should use a strategy that reduces the
chances that the risk will have serious effects.

• Finally, you should have strategies in place to cope with the risk if it
arises. These should reduce the overall impact of a risk on the project
or product.

Risk Monitoring:
• Risk monitoring is the process of checking that your assumptions

about the product, process, and business risks have not changed.

• You should regularly assess each of the identified risks to decide
whether or not that risk is becoming more or less probable.

• You should also think about whether or not the effects of the risk
have changed.

• To do this, you have to look at other factors, such as the number of
requirements change requests, which give you clues about the risk
probability and its effects. These factors are dependent on the types
of risk.

• You should monitor risks regularly at all stages in a project.

• At every management review, you should consider and discuss each
of the key risks separately.

• You should decide if the risk is more or less likely to arise and if the
seriousness and consequences of the risk have changed.

MANAGING PEOPLE
• The people working in a software organization are its greatest assets.

• It is expensive to recruit and retain good people.

• Software managers have to ensure that the engineers working on a project are as
productive as possible.

• It is important that software project managers understand the technical issues
that influence the work of software development.

• Software engineers often have strong technical skills but may lack the softer skills
that enable them to motivate and lead a project development team.

• As a project manager, you should be aware of the potential problems of people
management and should try to develop people management skills.

• 4 critical factors that influence the relationship between a manager and the people

that he or she manages:

1. Consistency  All the people in a project team should be treated in a

comparable way. No one expects all rewards to be identical, but people should

not feel that their contribution to the organization is undervalued.

2. Respect  Different people have different skills, and managers should respect

these differences.

3. Inclusion  People contribute effectively when they feel that others listen to

them and take account of their proposals. It is important to develop a working

environment where all views, even those of the least experienced staff, are

considered.

4. Honesty  As a manager, you should always be honest about what is going

well and what is going badly in the team. You should also be honest about

your level of technical knowledge and be willing to defer to staff with more

knowledge when necessary.

Motivating People:
• As a project manager, you need to motivate the people who work

with you so that they will contribute to the best of their abilities.

• In practice, motivation means organizing work and its environment to
encourage people to work as effectively as possible.

• To provide this encouragement, you should understand a little about
what motivates people.

• People are motivated by satisfying their needs. These needs are
arranged in a series of levels, as shown in Figure.

• The lower levels of this hierarchy represent fundamental needs for food,
sleep, and so on, and the need to feel secure in an environment.

• Social need is concerned with the need to feel part of a social grouping.

• Esteem need represents the need to feel respected by others, and self-
realization need is concerned with personal development.

• People need to satisfy lower-level needs such as hunger before the more
abstract, higher-level needs.

• People working in software development organizations are not usually
hungry, thirsty, or physically threatened by their environment. Therefore,
making sure that peoples’ social, esteem, and self-realization needs are
satisfied is most important from a management point of view.

1. To satisfy social needs, you need to give people time to meet their co-
workers and provide places for them to meet. This is relatively easy when
all of the members of a development team work in the same place.
Social networking systems and teleconferencing can be used for remote
communications.

2. To satisfy esteem needs, you need to show people that they are valued
by the organization. Public recognition of achievements is a simple and
effective way of doing this.

3. Finally, to satisfy self-realization needs, you need to give people
responsibility for their work, assign them demanding (but not
impossible) tasks, and provide opportunities for training and
development where people can enhance their skills. Training is an
important motivating influence as people like to gain new knowledge
and learn new skills.

• Maslow’s model of motivation takes an exclusively personal viewpoint
on motivation.

• It does not take adequate account of the fact that people feel
themselves to be part of an organization, a professional group, and
one or more cultures.

• Being a member of a cohesive group is highly motivating for most
people.

• Therefore, as a manager, you also have to think about how a group as
a whole can be motivated.

• Psychological personality type also influences motivation.

• Bass and Dunteman (Bass and Dunteman 1963) identified 3
classifications for professional workers:

1. Task-oriented people  who are motivated by the work they do. In
software engineering, these are people who are motivated by the
intellectual challenge of software development.

2. Self-oriented people  who are principally motivated by personal
success and recognition. They are interested in software development
as a means of achieving their own goals. They often have longer-term
goals and they wish to be successful in their work to help realize
these goals.

3. Interaction-oriented people  who are motivated by the presence
and actions of co-workers.

• Research has shown that interaction-oriented personalities usually

like to work as part of a group, whereas task-oriented and self-

oriented people usually prefer to act as individuals.

• People Capability Maturity Model (P-CMM)  is a framework for

assessing how well organizations manage the development of their

staff. It highlights best practice in people management and provides a

basis for organizations to improve their people management

processes. It is best suited to large rather than small, informal

companies.

TEAMWORK
• As it is impossible for everyone in a large group to work together on a

single problem, large teams are usually split into a number of smaller

groups.

• Each group is responsible for developing part of the overall system.

• The best size for a software engineering group is 4 to 6 members, and

they should never have more than 12 members.

• When groups are small, communication problems are reduced.

• Putting together a group that has the right balance of technical skills,
experience, and personalities is a critical management task.

• A good group is cohesive and thinks of itself as a strong, single unit.

• The people involved are motivated by the success of the group as well
as by their own personal goals.

• In a cohesive group, members think of the group as more important
than the individuals who are group members.

 They are loyal to the group.

 They identify with group goals and other group members.

 They attempt to protect the group, as an entity, from outside interference.
This makes the group robust and able to cope with problems and unexpected
situations.

• The benefits of creating a cohesive group are:
1. The group can establish its own quality standards.

2. Individuals learn from and support each other.

3. Knowledge is shared.

4. Refactoring and continual improvement is encouraged.

• Good project managers should always try to encourage group
cohesiveness.

• They may try to establish a sense of group identity by naming the group
and establishing a group identity and territory.

• One of the most effective ways of promoting cohesion is to be inclusive
i.e., you should treat group members as responsible and trustworthy, and
make information freely available.

• An effective way of making people feel valued and part of a group is

to make sure that they know what is going on.

• Given a stable organizational and project environment, the 3 factors

that have the biggest effect on team working are:

1. The people in the group (Selecting group members)

2. The way the group is organized (Group organizations)

3. Technical and managerial communications (Group communications)

Selecting Group Members:
• A manager or team leader’s job is to create a cohesive group and organize

that group so that they work together effectively.

• This task involves selecting a group with the right balance of technical skills
and personalities.

• Technical knowledge and ability should not be the only factor used to
select group members.

• People who are motivated by the work are likely to be the strongest
technically.

• People who are self-oriented will probably be best at pushing the work
forward to finish the job.

• People who are interaction-oriented help facilitate communications within
the group.

• The project manager has to control the group so that individual goals
do not take precedence over organizational and group objectives.

• This control is easier to achieve if all group members participate in
each stage of the project.

• Individual initiative is most likely to develop when group members are
given instructions without being aware of the part that their task
plays in the overall project.

• If all the members of the group are involved in the design from the
start, they are more likely to understand why design decisions have
been made. They may then identify with these decisions rather than
oppose them.

Group Organization:
• The way a group is organized affects the group’s decisions, the ways

information is exchanged, and the interactions between the
development group and external project stakeholders.

• Project managers are often responsible for selecting the people in the
organization who will join their software engineering team.

• Getting the best possible people in this process is very important as
poor selection decisions may be a serious risk to the project.

• Key factors that should influence the selection of staff are education
and training, application domain and technology experience,
communication ability, adaptability, and problem solving ability.

• Important organizational questions for project managers include the
following:

1. Should the project manager be the technical leader of the group?

2. Who will be involved in making critical technical decisions, and how will
these decisions be made? Will decisions be made by the system architect or
the project manager or by reaching consensus among a wider range of
team members?

3. How will interactions with external stakeholders and senior company
management be handled?

4. How can groups integrate people who are not co-located?

5. How can knowledge be shared across the group?

Informal Groups Hierarchical Groups

1. Small programming groups are usually organized.
2. Group leader gets involved in the software

development with the other group members.
3. The group as a whole discusses the work to be

carried out, and tasks are allocated according to
ability and experience.

4. More senior group members may be responsible
for the architectural design.

5. Detailed design and implementation is the
responsibility of the team member who is allocated
to a particular task.

6. Groups are very successful, particularly when most
group members are experienced and competent.
Such a group makes decisions which improves
cohesiveness and performance.

7. With no experienced engineers to direct the work,
the result can be a lack of coordination between
group members and, possibly, eventual project
failure.

1. Group leader is at the top of the hierarchy.
2. Group leader has more formal authority than the

group members and so can direct their work.
3. There is a clear organizational structure.
4. Decisions are made toward the top of the hierarchy

and implemented by people lower down.
5. Communications are primarily instructions from

senior staff; the people at lower levels of the
hierarchy have relatively little communication with
the managers at the upper levels.

6. These groups can work well when a well-
understood problem can be easily broken down
into software components that can be developed in
different parts of the hierarchy.

7. This grouping allows for rapid decision making.

• In software development, effective team communications at all levels is
essential:

1. Changes to the software often require changes to several parts of the system, and
this requires discussion and negotiation at all levels in the hierarchy.

2. Software technologies change so fast that more junior staff may know more about
new technologies than experienced staff. Top-down communications may mean
that the project manager does not find out about the opportunities of using these
new technologies. More junior staff may become frustrated because of what they
see as old-fashioned technologies being used for development.

• A major challenge facing project managers is the difference in technical
ability between group members.

• i.e., adopting a group model that is based on individual experts can pose
significant risks.

Group Communications:
• It is absolutely essential that group members communicate effectively

and efficiently with each other and with other project stakeholders.

• Good communication also helps strengthen group cohesiveness.

• Group members:
1. Exchange information on the status of their work, the design decisions that

have been made, and changes to previous design decisions.

2. Resolve problems that arise with other stakeholders and inform these
stakeholders of changes to the system, the group, and delivery plans.

3. Come to understand the motivations, strengths, and weaknesses of other
people in the group.

• The effectiveness and efficiency of communications are influenced by:
1. Group size  As a group gets bigger, it gets harder for members to

communicate effectively. The number of one-way communication links is
n * (n − 1), where n is the group size.

2. Group structure  People in informally structured groups communicate
more effectively than people in groups with a formal, hierarchical structure.

3. Group composition  People with the same personality may clash, and, as
a result, communications can be inhibited.

4. The physical work environment  The organization of the workplace is a
major factor in facilitating or inhibiting communications.

5. The available communication channels  There are many different forms
of communication—face to face, email messages, formal documents,
telephone, and technologies such as social networking and wikis.

• Effective communication is achieved when communications are two-way and
the people involved can discuss issues and information and establish a
common understanding of proposals and problems.

• All this can be done through meetings, although these meetings are often
dominated by powerful personalities.

• Informal discussions when a manager meets with the team for coffee are
sometimes more effective.

• Wikis and blogs allow project members and external stakeholders to
exchange information, irrespective of their location. They help manage
information and keep track of discussion threads, which often become
confusing when conducted by email.

• You can also use instant messaging and teleconferences, which can be easily
arranged, to resolve issues that need discussion.

MODULE 5

SOFTWARE QUALITY DILEMMA

SOFTWARE PROCESS IMPROVEMENT

ISO 9001:2000 Quality Management System process model

Micro services

Micro services Deployments

CST

309

MANAGEMENT OF

SOFTWARE SYSTEMS

Category L T P Credit
Year of

Introduction

PCC 3 0 0 3 2019

Preamble: This course provides fundamental knowledge in the Software Development Process.

It covers Software Development, Quality Assurance, Project Management concepts and

technology trends. This course enables the learners to apply state of the art industry practices in

Software development.

Prerequisite: Basic understanding of Object Oriented Design and Development.

Course Outcomes: After the completion of the course the student will be able to

CO1
Demonstrate Traditional and Agile Software Development approaches (Cognitive

Knowledge Level: Apply)

CO2
Prepare Software Requirement Specification and Software Design for a given

problem. (Cognitive Knowledge Level: Apply)

CO3

Justify the significance of design patterns and licensing terms in software

development, prepare testing, maintenance and DevOps strategies for a project.

(Cognitive Knowledge Level: Apply)

CO4

Make use of software project management concepts while planning, estimation,

scheduling, tracking and change management of a project, with a traditional/agile

framework. (Cognitive Knowledge Level: Apply)

CO5
Utilize SQA practices, Process Improvement techniques and Technology

advancements in cloud based software models and containers & microservices.

(Cognitive Knowledge Level: Apply)

Mapping of course outcomes with program outcomes

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO1

CO2

CO3

CO4

CO5

 Abstract POs defined by National Board of Accreditation

PO# Broad PO PO# Broad PO

PO1 Engineering Knowledge PO7 Environment and

Sustainability

PO2 Problem Analysis PO8 Ethics

PO3 Design/Development of

solutions

PO9 Individual and team work

PO4 Conduct investigations of

complex problems

PO10 Communication

PO5 Modern tool usage PO11 Project Management and

Finance

PO6 The Engineer and Society PO12 Lifelong learning

Assessment Pattern

Bloom’s Category

Continuous Assessment Tests End Semester

Examination Marks Test1 (Percentage) Test2 (Percentage)

Remember 30 30 30

Understand 40 40 50

Apply 30 30 20

Analyse

Evaluate

Create

Mark Distribution

Total Marks CIE Marks ESE Marks ESE

Duration

150 50 100 3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks

Continuous Assessment Tests : 25 marks

Continuous Assessment Assignment : 15 marks (Each student shall identify a software

development problem and prepare Requirements Specification, Design Document, Project Plan

and Test case documents for the identified problem as the assignment.)

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks.

First Internal Examination shall be preferably conducted after completing the first half of the

syllabus and the Second Internal Examination shall be preferably conducted after completing the

remaining part of the syllabus.

There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions

each from the completed modules and 1 question from the partly covered module), having 3

marks for each question adding up to 15 marks for part A. Students should answer all questions

from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed

modules and 1 question from the partly covered module), each with 7 marks. Out of the 7

questions in Part B, a student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from

each module, having 3 marks for each question. Students should answer all questions. Part B

contains 2 questions from each module of which a student should answer any one. Each question

can have a maximum of 2 subdivisions and carries 14 marks.

Syllabus

Module 1 : Introduction to Software Engineering (7 hours)

Introduction to Software Engineering - Professional software development, Software engineering

ethics. Software process models - The waterfall model, Incremental development. Process

activities - Software specification, Software design and implementation, Software validation,

Software evolution. Coping with change - Prototyping, Incremental delivery, Boehm's Spiral

Model. Agile software development - Agile methods, agile manifesto - values and principles.

Agile development techniques, Agile Project Management. Case studies : An insulin pump

control system. Mentcare - a patient information system for mental health care.

Module 2 : Requirement Analysis and Design (8 hours)

Functional and non-functional requirements, Requirements engineering processes. Requirements

elicitation, Requirements validation, Requirements change, Traceability Matrix. Developing use

cases, Software Requirements Specification Template, Personas, Scenarios, User stories, Feature

identification. Design concepts - Design within the context of software engineering, Design

Process, Design concepts, Design Model. Architectural Design - Software Architecture,

Architectural Styles, Architectural considerations, Architectural Design Component level design

- What is a component?, Designing Class-Based Components, Conducting Component level

design, Component level design for web-apps. Template of a Design Document as per “IEEE Std

1016-2009 IEEE Standard for Information Technology Systems Design Software Design

Descriptions”. Case study: The Ariane 5 launcher failure.

Module 3 : Implementation and Testing (9 hours)

Object-oriented design using the UML, Design patterns, Implementation issues, Open-source

development - Open-source licensing - GPL, LGPL, BSD. Review Techniques - Cost impact of

Software Defects, Code review and statistical analysis. Informal Review, Formal Technical

Reviews, Post-mortem evaluations. Software testing strategies - Unit Testing, Integration

Testing, Validation testing, System testing, Debugging, White box testing, Path testing, Control

Structure testing, Black box testing, Testing Documentation and Help facilities. Test automation,

Test-driven development, Security testing. Overview of DevOps and Code Management - Code

management, DevOps automation, Continuous Integration, Delivery, and Deployment

(CI/CD/CD). Software Evolution - Evolution processes, Software maintenance.

Module 4 : Software Project Management (6 hours)

Software Project Management - Risk management, Managing people, Teamwork. Project

Planning, Software pricing, Plan-driven development, Project scheduling, Agile planning.

Estimation techniques, COCOMO cost modeling. Configuration management, Version

management, System building, Change management, Release management, Agile software

management - SCRUM framework. Kanban methodology and lean approaches.

Module 5 : Software Quality, Process Improvement and Technology trends (6 hours)

Software Quality, Software Quality Dilemma, Achieving Software Quality Elements of

Software Quality Assurance, SQA Tasks , Software measurement and metrics. Software Process

Improvement(SPI), SPI Process CMMI process improvement framework, ISO 9001:2000 for

Software. Cloud-based Software - Virtualisation and containers, Everything as a service(IaaS,

PaaS), Software as a service. Microservices Architecture - Microservices, Microservices

architecture, Microservice deployment.

Text Books

1. Book 1 - Ian Sommerville, Software Engineering, Pearson Education, Tenth edition, 2015.

2. Book 2 - Roger S. Pressman, Software Engineering : A practitioner’s approach, McGraw

Hill publication, Eighth edition, 2014

3. Book 3 - Ian Sommerville, Engineering Software Products: An Introduction to

Modern Software Engineering, Pearson Education, First Edition, 2020.

References

1. IEEE Std 830-1998 - IEEE Recommended Practice for Software Requirements

SpeciÞcations

2. IEEE Std 1016-2009 IEEE Standard for Information Technology—Systems Design—

Software Design Descriptions

3. David J. Anderson, Kanban, Blue Hole Press 2010

4. David J. Anderson, Agile Management for Software Engineering, Pearson, 2003

5. Walker Royce, Software Project Management : A unified framework, Pearson Education,

1998

6. Steve. Denning, The age of agile, how smart companies are transforming the way work gets

done. New York, Amacom, 2018.

7. Satya Nadella, Hit Refresh: The Quest to Rediscover Microsoft’s Soul and Imagine a Better

Future for Everyone, Harper Business, 2017

8. Henrico Dolfing, Project Failure Case Studies: Lessons learned from other people’s

mistakes, Kindle edition

9. Mary Poppendieck, Implementing Lean Software Development: From Concept to Cash,

Addison-Wesley Signature Series, 2006

10. StarUML documentation - https://docs.staruml.io/

11. OpenProject documentation - https://docs.openproject.org/

12. BugZilla documentation - https://www.bugzilla.org/docs/

13. GitHub documentation - https://guides.github.com/

14. Jira documentation - https://www.atlassian.com/software/jira

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. What are the advantages of an incremental development model over a waterfall

model?

2. Illustrate how the process differs in agile software development and traditional

software development with a socially relevant case study. (Assignment question)

Course Outcome 2 (CO2):

1. How to prepare a software requirement specification?

2. Differentiate between Architectural design and Component level design.

3. How does agile approaches help software developers to capture and define the user

requirements effectively?

4. What is the relevance of the SRS specification in software development?

5. Prepare a use case diagram for a library management system.

Course Outcome 3 (CO3):

1. Differentiate between the different types of software testing strategies.

2. Justify the need for DevOps practices?

3. How do design patterns help software architects communicate the design of a complex

system effectively?

http://www.bugzilla.org/docs/
http://www.atlassian.com/software/jira
http://www.atlassian.com/software/jira

4. What are the proactive approaches one can take to optimise efforts in the testing phase?

Course Outcome 4 (CO4):

1. Illustrate the activities involved in software project management for a socially relevant

problem?

2. How do SCRUM, Kanban and Lean methodologies help software project

management?

3. Is rolling level planning in software project management beneficial? Justify your

answer.

4. How would you assess the risks in your software development project? Explain

how you can manage identified risks?

Course Outcome 5 (CO5):

1. Justify the importance of Software Process improvement?

2. Explain the benefits of cloud based software development, containers and

microservices.

3. Give the role of retrospectives in improving the software development process.

4. Illustrate the use of project history data as a prediction tool to plan future socially

relevant projects.

Model Question Paper

QP CODE:

Reg No: _

Name :

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

PAGES : 3

FIFTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR

Course Code: CST 309

Course Name: Management of Software Systems

Duration: 3 Hrs Max. Marks :100

PART A

Answer all Questions. Each question carries 3 marks

1. Why professional software that is developed for a customer is not simply the

programs that have been developed and delivered.

2. Incremental software development could be very effectively used for customers

who do not have a clear idea about the systems needed for their operations.

Justify.

3. Identify any four types of requirements that may be defined for a software system

4. Describe software architecture

5. Differentiate between GPL and LGPL?

6. Compare white box testing and black box testing.

7. Specify the importance of risk management in software project management?

8. Describe COCOMO cost estimation model.

9. Discuss the software quality dilemma

10. List the levels of the CMMI model? (10x3=30)

Part B

(Answer any one question from each module. Each question carries 14

Marks)

11. (a) Compare waterfall model and spiral model

 (8)

 (b) Explain Agile ceremonies and Agile manifesto

 (6)

12.

(a)

Illustrate software process activities with an example.

 (8)

(b) Explain Agile Development techniques and Agile Project Management (6)

13. (a) What are functional and nonfunctional requirements? Imagine that you are

developing a library management software for your college, list eight

functional requirements and four nonfunctional requirements.

 (10)

(b)

List the components of a software requirement specification?

 (4)

OR

14. (a) Explain Personas, Scenarios, User stories and Feature identification? (8)

(b) Compare Software Architecture design and Component level design (6)

15. (a) Explain software testing strategies. (8)

(b) Describe the formal and informal review techniques. (6)

OR

16. (a) Explain Continuous Integration, Delivery, and Deployment CI/CD/CD)

 (8)

(b) Explain test driven development (6)

17. (a) What is a critical path and demonstrate its significance in a project schedule

with the help of a sample project schedule.

(8)

(b) Explain plan driven development and project scheduling. (6)

OR

18. (a) Explain elements of Software Quality Assurance and SQA Tasks. (6)

(b)

What is algorithmic cost modeling? What problems does it suffer from when

(8)

 compared with other approaches to cost estimation?

19. (a) Explain elements of Software Quality Assurance and SQA Tasks. (8)

(b) Illustrate SPI process with an example. (6)

OR

20. (a) Compare CMMI and ISO 9001:2000. (8)

(b) How can Software projects benefit from Container deployment and Micro

service deployment?

(6)

Teaching Plan

No

Contents

No of

Lecture

Hrs

Module 1 : Introduction to Software Engineering (7 hours)

1.1 Introduction to Software Engineering.[Book 1, Chapter 1] 1 hour

1.2 Software process models [Book 1 - Chapter 2] 1 hour

1.3 Process activities [Book 1 - Chapter 2] 1 hour

1.4 Coping with change [Book 1 - Chapter 2, Book 2 - Chapter 4] 1 hour

1.5 Case studies : An insulin pump control system. Mentcare - a patient

information system for mental health care. [Book 1 - Chapter 1]

1 hour

1.6 Agile software development [Book 1 - Chapter 3] 1 hour

1.7 Agile development techniques, Agile Project Management.[Book 1 - Chapter

3]

1 hour

Module 2 : Requirement Analysis and Design (8 hours)

2.1 Functional and non-functional requirements, Requirements engineering

processes [Book 1 - Chapter 4]

1 hour

2.2 Requirements elicitation, Requirements validation, Requirements change,

Traceability Matrix [Book 1 - Chapter 4]

1 hour

2.3 Developing use cases, Software Requirements Specification Template [Book

2 - Chapter 8]

1 hour

2.4 Personas, Scenarios, User stories, Feature identification [Book 3 - Chapter 3] 1 hour

2.5 Design concepts [Book 2 - Chapter 12] 1 hour

2.6 Architectural Design [Book 2 - Chapter 13] 1 hour

2.7 Component level design [Book 2 - Chapter 14] 1 hour

2.8 Design Document Template. Case study: The Ariane 5 launcher failure. [Ref

- 2, Book 2 - Chapter 16]

1 hour

Module 3 : Implementation and Testing (9 hours)

3.1 Object-oriented design using the UML, Design patterns [Book 1 - Chapter 7] 1 hour

3.2 Implementation issues, Open-source development - Open-source licensing -

GPL, LGPL, BSD [Book 1 - Chapter 7]

1 hour

3.3 Review Techniques - Cost impact of Software Defects, Code review and

statistical analysis. [Book 2 - Chapter 20]

1 hour

34 Informal Review, Formal Technical Reviews, Post-mortem evaluations.

[Book 2 - Chapter 20]

1 hour

3.5 Software testing strategies - Unit Testing, Integration Testing, Validation

testing, System testing and Debugging (basic concepts only). [Book 2 -

Chapter 22]

1 hour

3.6 White box testing, Path testing, Control Structure testing, Black box testing.

Test documentation [Book 2 - Chapter 23]

1 hour

3.7 Test automation, Test-driven development, Security testing. [Book 3 -

Chapter 9]

1 hour

3.8 DevOps and Code Management - Code management, DevOps automation,

CI/CD/CD. [Book 3 - Chapter 10]

1 hour

3.9 Software Evolution - Evolution processes, Software maintenance. [Book 1 -

Chapter 9]

1 hour

Module 4 : Software Project Management (6 hours)

4.1 Software Project Management - Risk management, Managing people,

Teamwork [Book 1 - Chapter 22]

1 hour

4.2 Project Planning - Software pricing, Plan-driven development, Project

scheduling, Agile planning [Book 1 - Chapter 23]

1 hour

4.3 Estimation techniques [Book 1 - Chapter 23] 1 hour

4.4 Configuration management [Book 1 - Chapter 25] 1 hour

4.5 Agile software management - SCRUM framework [Book 2 - Chapter 5] 1 hour

4.6 Kanban methodology and lean approaches.[Ref 9 - Chapter 2] 1 hour

Module 5 : Software Quality, Process Improvement and Technology trends (6

hours)

5.1 Software Quality, Software Quality Dilemma, Achieving Software Quality.

[Book 2 - Chapter 19]

1 hour

5.2 Elements of Software Quality Assurance, SQA Tasks , Software

measurement and metrics. [Book 3 - Chapter 21]

1 hour

5.3 Software Process Improvement (SPI), SPI Process [Book 2 - Chapter 37] 1 hour

5.4 CMMI process improvement framework, ISO 9001:2000 for Software.

[Book 2 - Chapter 37]

1 hour

5.5 Cloud-based Software - Virtualisation and containers, IaaS, PaaS,

SaaS.[Book 3 - Chapter 5]

1 hour

5.6 Microservices Architecture - Microservices, Microservices architecture,

Microservice deployment [Book 3 - Chapter 6]

1 hour

